cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A321982 Row n gives the chromatic symmetric function of the n-ladder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

2, 0, 12, 2, 0, 0, 0, 54, 26, 16, 0, 2, 0, 0, 0, 0, 0, 0, 216, 120, 168, 84, 0, 24, 40, 32, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 810, 648, 822, 56, 240, 870, 280, 282, 120, 24, 0, 266, 232, 0, 48, 0, 54, 0, 48, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-ladder has 2*n vertices and looks like:
o-o-o- -o
| | | ... |
o-o-o- -o
Conjecture: All terms are nonnegative (verified up to the 5-ladder).

Examples

			Triangle begins:
    2   0
   12   2   0   0   0
   54  26  16   0   2   0   0   0   0   0   0
  216 120 168  84   0  24  40  32   0   0   2   0   0   [+9 more zeros]
For example, row 3 gives: X_L3 = 54e(6) + 26e(42) + 16e(51) + 2e(222).
		

Crossrefs

A207864 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 4, 34, 500, 10900, 322768, 12297768, 580849872, 33093252880, 2227152575552, 174131286983712, 15604440074084672, 1584856558077903168, 180712593036822482176, 22946861101272125055616, 3222156375409363475703040
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

From Gus Wiseman, Mar 01 2019: (Start)
Also the number of stable partitions of the n-ladder graph. A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The n-ladder has 2n vertices and looks like:
o-o-o- -o
| | | ... |
o-o-o- -o
(End)

Examples

			Some solutions for n=5:
  0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1
  1 0   1 0   1 2   1 2   1 0   1 0   1 2   1 0   1 0   1 0
  0 1   0 1   0 1   0 1   2 1   0 1   0 1   0 2   2 1   0 1
  1 2   1 0   1 0   1 3   3 0   2 0   3 2   2 1   1 0   1 2
  0 1   0 1   2 1   2 4   1 2   0 1   0 1   0 2   0 1   2 0
		

Crossrefs

Programs

  • Mathematica
    Table[Expand[x*(x-1)*(x^2-3*x+3)^(n-1)]/.x^k_.->BellB[k],{n,20}] (* Gus Wiseman, Mar 01 2019 *)

Formula

It appears that the sequence terms are given by the Dobinski-type formula a(n+1) = (1/e) * Sum_{k>=0} (1+k+k^2)^n/k!. - Peter Bala, Mar 12 2012
Apply x^n -> B(n) to the polynomial chi(n) = x (x - 1) (x^2 - 3 x + 3)^(n - 1), where B = A000110. - Gus Wiseman, Mar 01 2019

A321981 Row n gives the chromatic symmetric function of the n-girder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 6, 0, 0, 16, 0, 2, 0, 0, 40, 12, 2, 0, 0, 0, 0, 96, 16, 44, 6, 0, 0, 0, 0, 0, 0, 0, 224, 136, 66, 52, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 512, 384, 208, 96, 30, 178, 0, 18, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1152, 1024, 584, 522, 138, 588, 102
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-girder has n vertices and looks like:
2-4-6- -n
|\|\|\ ... \|
1-3-5- n-1
Conjecture: All terms are nonnegative (verified up to n = 10). This is a special case of Stanley and Stembridge's poset-chain conjecture.

Examples

			Triangle begins:
    1
    2   0
    6   0   0
   16   0   2   0   0
   40  12   2   0   0   0   0
   96  16  44   6   0   0   0   0   0   0   0
  224 136  66  52   2   4   0   2   0   0   0   0   0   0   0
For example, row 6 gives: X_G6 = 96e(6) + 6e(33) + 16e(42) + 44e(51).
		

Crossrefs

A321994 Number of different chromatic symmetric functions of hypertrees on n vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 59, 165
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
Stanley conjectured that the number of distinct chromatic symmetric functions of trees with n vertices is equal to A000055, i.e., the chromatic symmetric function distinguishes between trees. It has been proven for trees with up to 25 vertices. If it is true in general, does the chromatic symmetric function also distinguish between hypertrees, meaning this sequence would be equal to A035053?

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c];
    hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Or[SubsetQ[#1,#2],Length[Intersection[#1,#2]]>1]&],And[Union@@#==Range[n],Length[csm[#]]==1,density[#]==-1]&];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    Table[Length[Union[chromSF/@If[n==1,{{{1}}},hyall[n]]]],{n,5}]

A322011 Number of distinct chromatic symmetric functions of spanning hypergraphs (or antichain covers) on n vertices.

Original entry on oeis.org

1, 2, 5, 19, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895).

Examples

			The a(3) = 5 chromatic symmetric functions:
                  m(111)
          m(21) + m(111)
         2m(21) + m(111)
         3m(21) + m(111)
  m(3) + 3m(21) + m(111)
		

Crossrefs

Programs

  • Mathematica
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    hyps[n_]:=Select[stableSets[Rest[Subsets[Range[n]]],SubsetQ],Union@@#==Range[n]&];
    Table[Length[Union[chromSF/@hyps[n]]],{n,5}]

A322063 Number of ways to choose a stable partition of an antichain of sets spanning n vertices.

Original entry on oeis.org

1, 1, 3, 25, 773, 160105
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block.

Examples

			The a(3) = 25 stable partitions of antichains on 3 vertices. The antichain is on top, and below is a list of all its stable partitions.
  {1}{2}{3}      {1,2,3}        {1}{2,3}       {1,3}{2}       {1,2}{3}
  --------       --------       --------       --------       --------
  {{1,2,3}}      {{1},{2,3}}    {{1,2},{3}}    {{1},{2,3}}    {{1},{2,3}}
  {{1},{2,3}}    {{1,2},{3}}    {{1,3},{2}}    {{1,2},{3}}    {{1,3},{2}}
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
  {{1,3},{2}}    {{1},{2},{3}}
  {{1},{2},{3}}
.
  {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
  --------       --------       --------       --------
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
  {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Sum[Length[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ]],{stn,sps[Range[n]]}],{n,5}]

A322065 Number of ways to choose a stable partition of a connected antichain of sets spanning n vertices.

Original entry on oeis.org

1, 1, 1, 11, 525, 146513
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block.

Examples

			The a(3) = 11 stable partitions. The connected antichain is on top, and below is a list of all its stable partitions.
{1,2,3}        {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
--------       --------       --------       --------       --------
{{1},{2,3}}    {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
{{1,2},{3}}    {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
{{1,3},{2}}
{{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Sum[Length[Select[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]

A355073 G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*3^(n*(n-1)/2)) ).

Original entry on oeis.org

1, 1, 4, 55, 2539, 383860, 187659181, 293630900689, 1459799672901004, 22924423319469919651, 1131844225175191511724871, 175015470856131731421651730600, 84480805958219938739735661779357401, 126948830401157131161305967764668449231937
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*3^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n);
    
  • PARI
    T(n, k) = if(k==1, 1, sum(j=1, n-1, 3^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));
    a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));

A355074 G.f.: Sum_{n>=0} a(n)*x^n/(n!*4^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*4^(n*(n-1)/2)) ).

Original entry on oeis.org

1, 1, 5, 113, 11265, 4859137, 8966576129, 70171067707393, 2313986342570295297, 319893682564775147012097, 184627527352223449064321581057, 443344010564094761887045848673550337, 4416539344305075410912848824562640662560769
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*4^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*4^(k*(k-1)/2)))+x*O(x^n)), n);
    
  • PARI
    T(n, k) = if(k==1, 1, sum(j=1, n-1, 4^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));
    a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));

A322012 Number of s-positive simple labeled graphs with n vertices.

Original entry on oeis.org

1, 2, 8, 60, 1009
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895). A graph is s-positive if, in the expansion of its chromatic symmetric function in terms of Schur functions, all coefficients are nonnegative.

Crossrefs

Previous Showing 11-20 of 22 results. Next