cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A235229 Numbers whose sum of digits is 20.

Original entry on oeis.org

299, 389, 398, 479, 488, 497, 569, 578, 587, 596, 659, 668, 677, 686, 695, 749, 758, 767, 776, 785, 794, 839, 848, 857, 866, 875, 884, 893, 929, 938, 947, 956, 965, 974, 983, 992, 1199, 1289, 1298, 1379, 1388, 1397, 1469, 1478, 1487, 1496, 1559, 1568, 1577, 1586
Offset: 1

Views

Author

Vincenzo Librandi, Jan 05 2014

Keywords

Comments

A007953(a(n)) = 20; number of repdigits = #{5555,44444,2222222222,1^20} = A242627(20) = 4. - Reinhard Zumkeller, Jul 17 2014

Crossrefs

Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19).

Programs

  • Haskell
    a235229 n = a235229_list !! (n-1)
    a235229_list = filter ((== 20) . a007953) [0..]
    -- Reinhard Zumkeller, Jul 17 2014
  • Magma
    [n: n in [1..2000] | &+Intseq(n) eq 20];
    
  • Mathematica
    Select[Range[2000], Total[IntegerDigits[#]]==20&]

A235226 Numbers whose sum of digits is 15.

Original entry on oeis.org

69, 78, 87, 96, 159, 168, 177, 186, 195, 249, 258, 267, 276, 285, 294, 339, 348, 357, 366, 375, 384, 393, 429, 438, 447, 456, 465, 474, 483, 492, 519, 528, 537, 546, 555, 564, 573, 582, 591, 609, 618, 627, 636, 645, 654, 663, 672, 681, 690, 708, 717, 726, 735
Offset: 1

Views

Author

Vincenzo Librandi, Jan 05 2014

Keywords

Comments

A007953(a(n)) = 15; number of repdigits = #{555,33333,1^15} = A242627(15) = 3. - Reinhard Zumkeller, Jul 17 2014

Crossrefs

Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Haskell
    a235226 n = a235226_list !! (n-1)
    a235226_list = filter ((== 15) . a007953) [0..]
    -- Reinhard Zumkeller, Jul 17 2014
  • Magma
    [n: n in [1..1000] | &+Intseq(n) eq 15];
    
  • Mathematica
    Select[Range[1000], Total[IntegerDigits[#]] == 15 &]

A242627 Number of divisors of n that are less than 10.

Original entry on oeis.org

9, 1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2014

Keywords

Comments

Number of numbers <= 9, dividing n;
a(n) <= 9; a(2520*n) = 9;
a(n) = (number of repdigit numbers in row n of triangle A242614) = sum(A202022(A242614(n,k)): k=1..A242622(n)), for n > 0.
Periodic with period 2520. Each period there are 576 1's, 720 2's, 464 3's, 360 4's, 206 5's, 122 6's, 58 7's, 13 8's, and 1 9 (average 2.82...). - Charles R Greathouse IV, Sep 27 2015

Crossrefs

Cf. A165412.

Programs

  • Haskell
    a242627 n = length $ filter ((== 0) . mod n) [1..9]
    
  • Maple
    a:= n -> numboccur(0,map2(`modp`,n,[$1..9])):
    map(a,[$0..100]); # Robert Israel, Jul 31 2014
  • Mathematica
    a[n_] := If[n == 0, 9, Count[Divisors[n], d_ /; d < 10]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 13 2021 *)
  • PARI
    a(n)=1+sum(k=2,9,n%k<1) \\ Zak Seidov, Jul 31 2014

Formula

G.f.: Sum_(j=1..9, 1/(1-x^j)). - Robert Israel, Jul 31 2014

A242622 a(n) = number of numbers with digit sum n, not greater than the n-th repunit (cf. A052222).

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 287, 1079, 4082, 15522, 59271, 227131, 873051, 3364827, 12998867, 50321075, 195162350, 758156366, 2949614789, 11490869489, 44819531180, 175009397380, 684059403670, 2676260628574, 10479320689274, 41065736472890, 161043272100440, 631974335773536
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2014

Keywords

Comments

a(n) = length of row n in triangle A242614.

Programs

  • Haskell
    a242622 = length . a242614_row
    
  • PARI
    \\ c[x,y] = #numbers < 10^x with digit sum y-1.
    m=50; c=matrix(m,m+1); for(x=1, m, for(y=1, m+1, c[x,y]=sum(d=0, min(9,y-1), if(x>1, c[x-1,y-d], d==y-1)))); for(n=0, m, print1(1+sum(i=2, n, c[i-1,i+1])", ")); \\ Jens Kruse Andersen, Jul 17 2014

Extensions

More terms from Jens Kruse Andersen, Jul 17 2014

A114034 Let f(n) be the number of sequences of 1's and 2's which sum to n. Sequence contains the string of sequences.

Original entry on oeis.org

1, 2, 11, 12, 21, 111, 22, 112, 121, 211, 1111, 122, 212, 221, 1112, 1121, 1211, 2111, 11111, 222, 1122, 1212, 1221, 2112, 2121, 2211, 11112, 11121, 11211, 12111, 21111, 111111, 1222, 2122, 2212, 2221, 11122, 11212, 11221, 12112, 12121, 12211, 21112, 21121, 21211, 22111, 111112, 111121, 111211, 112111, 121111, 211111, 1111111
Offset: 1

Views

Author

Amarnath Murthy, Nov 13 2005

Keywords

Comments

Number of sequences of ones and twos that sum to n are Fibonacci(n+1). The maximum number of terms in a sequence is n. (111111 n times). Following is the triangle of the frequency of sequences of each size:
1
1 1
0 2 1
0 1 3 1
0 0 3 4 1
0 0 1 6 5 1
...
This is a vertical Pascal's triangle and the horizontal sum gives the Fibonacci numbers.
Each row of the irregular triangle provides a list of increasing positive integers of only 1s and 2s that sum up to n (see Example section). - Stefano Spezia, Jan 14 2024

Examples

			The irregular triangle begins:
  n
  1:   1;                                          f(1) = 1.
  2:   2,  11;                                     f(2) = 2.
  3:  12,  21, 111;                                f(3) = 3.
  4:  22, 112, 121,  211, 1111;                    f(4) = 5.
  5: 122, 212, 221, 1112, 1121, 1211, 2111, 11111; f(5) = 8.
...
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Select[Range[(10^n-1)/9], SubsetQ[{1,2}, DeleteDuplicates[digits = IntegerDigits[#]]] && Total[digits]==n &]; Array[row,7]//Flatten (* Stefano Spezia, Jan 14 2024 *)

Extensions

More terms from Terryjames Morris (trm5002(AT)psu.edu), Mar 09 2007
Duplicate term removed by Stefano Spezia, Jan 14 2024
Previous Showing 21-25 of 25 results.