cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A249400 Numbers n such that n!3 + 3 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 19, 20, 26, 28, 29, 32, 41, 56, 61, 77, 100, 169, 181, 205, 338, 347, 955, 1952, 2197, 2428, 2960, 3430, 4618, 7478, 8209, 8422, 9235, 11107, 13481, 18194, 19229, 29854, 46532
Offset: 1

Views

Author

Robert Price, Oct 27 2014

Keywords

Comments

Large terms correspond to probable primes.
a(44) > 50000.

Examples

			11!3+3 = 11*8*5*2+3 = 883 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    lst={};Do[If[PrimeQ[MultiFactorial[n, 3] + 3], AppendTo[lst, n]], {n, 100}];lst

A264867 Numbers n such that n!3 + 3^8 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

2, 5, 10, 26, 34, 35, 37, 59, 68, 76, 104, 106, 188, 193, 242, 278, 287, 290, 572, 772, 773, 1304, 2384, 2716, 3715, 4562, 6706, 11489, 11711, 21602, 24295, 24775, 27224, 29935, 37856
Offset: 1

Views

Author

Robert Price, Nov 26 2015

Keywords

Comments

Corresponding primes are 6563, 6571, 6841, 2504908961, 17961239302561, 81359229958561, 664565853958561, ...
Terms > 68 correspond to probable primes.
a(36) > 50000.

Examples

			10!3 + 3^4 = 10*7*4*1 + 6561 = 6841 is prime, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^8] &]
    Select[Range[800],PrimeQ[6561+Times@@Range[#,1,-3]]&] (* Harvey P. Dale, Mar 08 2023 *)
  • PARI
    is(n)=ispseudoprime(n!!! + 3^8) \\ Anders Hellström, Nov 27 2015
    
  • PARI
    tf(n) = prod(i=0,(n-1)\3, n-3*i);
    for(n=1, 1e4, if(ispseudoprime(tf(n) + 3^8), print1(n , ", "))) \\  Altug Alkan, Dec 03 2015

A289817 Primes of the form k!3-9, where k!3 is the triple factorial number (A007661).

Original entry on oeis.org

19, 71, 271, 3631, 58231, 209431, 4188791, 96342391, 17041023991, 72642169591, 2324549427191, 1143053268797439991, 52580450364682239991, 262134882788466687991, 694657439389436723199991, 38900816605808456499199991, 2295148179742698933452799991
Offset: 1

Views

Author

Robert Price, Jul 12 2017

Keywords

Crossrefs

Cf. A243078.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 3] - 9, {i, 5, 100}], PrimeQ[#]&]

A374901 Numbers k such that k!^2 + ((k - 1)!^2) + 1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 10, 11, 118, 271, 288, 441, 457, 2931, 5527, 6984, 9998, 10395, 13703
Offset: 1

Views

Author

Arsen Vardanyan, Jul 31 2024

Keywords

Comments

a(18) > 15000 - Karl-Heinz Hofmann, Aug 23 2024

Examples

			4 is a term, because 4!^2 + 3!^2 + 1 = 576 + 36 + 1 = 613 is a prime number.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime((k!^2)+((k-1)!)^2+1);
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A374901_gen(): # generator of terms
        f = 1
        for k in count(1):
            if isprime((k**2+1)*f+1):
                yield k
            f *= k**2
    A374901_list = list(islice(A374901_gen(),10)) # Chai Wah Wu, Oct 02 2024

Extensions

a(12)-a(14) from Michael S. Branicky, Aug 01 2024
a(15)-a(17) from Karl-Heinz Hofmann, Aug 23 2024
Previous Showing 11-14 of 14 results.