cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A362985 Decimal expansion of the asymptotic mean of the abundancy index of the cubefull numbers (A036966).

Original entry on oeis.org

2, 4, 8, 2, 1, 7, 9, 1, 9, 6, 4, 2, 2, 3, 5, 9, 5, 2, 5, 4, 6, 1, 6, 7, 6, 4, 3, 6, 7, 4, 6, 8, 7, 6, 9, 8, 5, 3, 6, 3, 6, 8, 9, 4, 0, 9, 7, 1, 9, 3, 0, 4, 6, 8, 3, 5, 4, 3, 6, 3, 9, 3, 2, 8, 1, 4, 4, 4, 2, 3, 3, 8, 8, 5, 7, 6, 7, 5, 0, 4, 6, 3, 4, 1, 1, 5, 0, 7, 3, 1, 0, 3, 9, 8, 0, 4, 4, 7, 4, 0, 3, 7, 3, 1, 0
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Examples

			2.48217919642235952546167643674687698536368940971930468354...
		

Crossrefs

Similar constants (the asymptotic mean of the abundancy index of other sequences): A013661 (all positive integers), A082020 (cubefree), A111003 (odd), A157292 (5-free), A157294 (7-free), A157296 (9-free), A245058 (even), A240976 (squares), A306633 (squarefree), A362984 (powerful).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{2, -1, -2, 3, -2, -1, 3, -2, -2, 3, -1, -2, 3, -1, -1, 1}, {0, 0, 0, -4, 0, 6, 7, 4, 9, 0, -11, -22, -26, -21, -15, 20}, m]; RealDigits[((2^5 + 2^(10/3) + 2^3 + 2^(8/3) - 1)/(2^(10/3)*(2^(5/3) + 2^(1/3) + 1)))*((3^5 + 3^(10/3) + 3^3 + 3^(8/3) - 1)/(3^(10/3)*(3^(5/3) + 3^(1/3) + 1))) * Zeta[4/3] * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    zeta(4/3) * prodeulerrat((p^15 + p^10 + p^9 + p^8 - 1)/(p^10 * (p^5 + p + 1)), 1/3)

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A362986(k)/A036966(k).
Equals zeta(4/3) * Product_{p prime} ((p^5 + p^(10/3) + p^3 + p^(8/3) - 1)/(p^(10/3) * (p^(5/3) + p^(1/3) + 1))).

A137933 Least common multiple of n^2 and 2.

Original entry on oeis.org

2, 4, 18, 16, 50, 36, 98, 64, 162, 100, 242, 144, 338, 196, 450, 256, 578, 324, 722, 400, 882, 484, 1058, 576, 1250, 676, 1458, 784, 1682, 900, 1922, 1024, 2178, 1156, 2450, 1296, 2738, 1444, 3042, 1600, 3362, 1764, 3698, 1936, 4050, 2116, 4418, 2304, 4802, 2500, 5202, 2704
Offset: 1

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Crossrefs

Programs

Formula

a(n) = lcm(n^2, 2).
From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: -2x(1 + 6x^2 + x^4 + 2x^3 + 2x)/((-1+x)^3 * (x+1)^3).
a(2n) = A016742(n).
a(2n+1) = A077591(n). (End)
a(n) = n*A109043(n). - Michel Marcus, Mar 13 2018
From Amiram Eldar, Jul 06 2022: (Start)
Sum_{n>=1} 1/a(n) = 5*Pi^2/48.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 = -A245058. (End)
Previous Showing 11-12 of 12 results.