cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A269861 Numbers n such that n and A048673(n) are of opposite parity.

Original entry on oeis.org

4, 5, 7, 10, 12, 14, 15, 16, 17, 19, 21, 29, 30, 34, 36, 38, 40, 41, 42, 43, 44, 45, 48, 51, 52, 53, 55, 56, 57, 58, 61, 63, 64, 65, 67, 73, 77, 79, 82, 86, 87, 90, 91, 92, 100, 101, 102, 103, 106, 108, 110, 113, 114, 115, 120, 122, 123, 124, 125, 126, 127, 129, 130, 132, 134, 135, 136, 137, 140, 144, 146, 148, 149
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2016

Keywords

Comments

Union of even terms of A246261 and odd terms of A246263.

Crossrefs

Complement: A269860.
Left inverse: A269862.
Cf. also A270431.

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; Select[Range@ 150, Xor[EvenQ@ f@ #, EvenQ@ #] &] (* Michael De Vlieger, Mar 17 2016 *)

Formula

Other identities. For all n >= 1:
A269862(a(n)) = n.

A286584 a(n) = A048673(n) mod 4.

Original entry on oeis.org

1, 2, 3, 1, 0, 0, 2, 2, 1, 3, 3, 3, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0, 3, 0, 1, 2, 3, 2, 0, 1, 3, 2, 1, 1, 3, 1, 1, 3, 3, 3, 2, 3, 0, 3, 0, 0, 3, 3, 1, 2, 0, 1, 2, 0, 2, 1, 2, 3, 3, 2, 2, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 2, 3, 0, 0, 0, 2, 0, 1, 1, 1, 0, 3, 3, 2, 0, 1, 3, 2, 3, 1, 0, 1, 0, 3, 2, 3, 1, 0, 3, 2, 2, 1, 1, 3, 3, 1, 1, 3, 2, 0
Offset: 1

Views

Author

Antti Karttunen, May 31 2017

Keywords

Crossrefs

Cf. A246261 (positions of odd terms), A246263 (of even terms).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    A286584(n) = (A048673(n)%4);
    
  • Python
    from sympy import factorint, nextprime
    from operator import mul
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2
    def a(n): return a048673(n)%4 # Indranil Ghosh, Jun 12 2017
  • Scheme
    (define (A286584 n) (modulo (A048673 n) 4))
    

Formula

a(n) = A010873(A048673(n)) = A048673(n) mod 4.

A292603 Doudna-tree reduced modulo 4: a(n) = A005940(1+n) mod 4.

Original entry on oeis.org

1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 01 2017

Keywords

Examples

			The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292602):
                               1
                               |
                               2
                ............../ \..............
               3                               0
        ....../ \......                 ....../ \......
       1               2               1               0
      / \             / \             / \             / \
     /   \           /   \           /   \           /   \
    3     2         3     0         1     2         3     0
   / \   / \       / \   / \       / \   / \       / \   / \
  3   2 1   0     3   2 1   0     1   2 3   0     1   2 1   0
		

Crossrefs

Cf. A004767 (gives the positions of 0's), A016813 (of 2's).

Programs

Formula

a(n) = A010873(A005940(1+n)).
a(n) + 4*A292602(n) = A005940(1+n).
a(2n+1) = 2*a(n) mod 4.
a(A004767(n)) = 0.
a(A016813(n)) = 2.
a(2*A156552(A246261(n))) = 1.
a(2*A156552(A246263(n))) = 3.
a(n * 2^(1+A246271(A005940(1+n)))) = 1.

A289623 a(n) = A055396(A048673(n)).

Original entry on oeis.org

0, 1, 2, 3, 1, 1, 1, 1, 6, 5, 4, 9, 2, 7, 1, 13, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 16, 8, 1, 2, 10, 2, 30, 2, 3, 14, 3, 1, 23, 1, 17, 1, 1, 2, 4, 18, 1, 1, 4, 1, 1, 1, 35, 1, 15, 11, 1, 1, 1, 1, 3, 1, 1, 1, 1, 21, 1, 12, 1, 1, 1, 2, 1, 1, 1, 1, 1, 65, 3, 2, 1, 19, 20, 1, 1, 4, 56, 1, 32, 2, 1, 2, 1, 2, 1, 38, 6
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2017

Keywords

Comments

From the scatter plot it can be seen that the terms are grouped into two distinct populations by their magnitude, with significant gap between them.

Crossrefs

Cf. A048673, A055396, A246263 (the positions of ones).

Programs

Formula

a(n) = A055396(A048673(n)).
Previous Showing 11-14 of 14 results.