A124758 Product of the parts of the compositions in standard order.
1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 4, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6
Offset: 0
Examples
Composition number 11 is 2,1,1; 2*1*1 = 2, so a(11) = 2. The table starts: 1 1 2 1 3 2 2 1 4 3 4 2 3 2 2 1 5 4 6 3 6 4 4 2 4 3 4 2 3 2 2 1 The 146-th composition in standard order is (3,3,2), with product 18, so a(146) = 18. - _Gus Wiseman_, Apr 03 2020
Links
- Alois P. Heinz, Rows n = 0..14, flattened
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021.
Crossrefs
The lengths of standard compositions are given by A000120.
The version for prime indices is A003963.
The version for binary indices is A096111.
Taking the sum instead of product gives A070939.
The sum of binary indices is A029931.
The sum of prime indices is A056239.
Taking GCD instead of product gives A326674.
Positions of first appearances are A331579.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Table[Times@@stc[n],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)
Formula
For a composition b(1),...,b(k), a(n) = Product_{i=1}^k b(i).
From Mikhail Kurkov, Jul 11 2021: (Start)
Some conjectures:
a(2n+1) = a(n) for n >= 0.
a(2n) = (1 + 1/A001511(n))*a(n) = 2*a(n) + a(n - 2^f(n)) - a(2n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
From the 1st formula for a(2n) we get a(4n+2) = 2*a(n), a(4n) = 2*a(2n) - a(n).
Sum_{k=0..2^n - 1} a(k) = A001519(n+1) for n >= 0.
a((4^n - 1)/3) = A011782(n) for n >= 0.
a(2^m*(2^n - 1)) = m + 1 for n > 0, m >= 0. (End)
Comments