cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A247301 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,0) to (n,k), where 0 >= k <= 2, consisting of segments given by the vectors (1,1), (2,1), (1,-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 4, 3, 4, 6, 6, 6, 12, 10, 12, 20, 18, 20, 36, 32, 36, 64, 56, 64, 112, 100, 112, 200, 176, 200, 352, 312, 352, 624, 552, 624, 1104, 976, 1104, 1952, 1728, 1952, 3456, 3056, 3456, 6112, 5408, 6112, 10816, 9568, 10816
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2014

Keywords

Examples

			First 10 columns:
0 .. 0 .. 1 .. 2 .. 3 .. 6 .. 10 .. 18 .. 32 .. 56
0 .. 1 .. 1 .. 2 .. 4 .. 6 .. 12 .. 20 .. 36 .. 64
1 .. 0 .. 1 .. 1 .. 2 .. 4 .. 6 ... 12 .. 20 .. 36
T(4,1) counts these 4 paths, given as vector sums applied to (0,0):
(1,1) + (1,-1) + (2,1);
(2,1) + (1,-1) + (1,-1);
(2,1) + (1,1) + (1,-1);
(1,1) + (2,1) + (1,-1).
		

Crossrefs

Programs

  • Mathematica
    t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0;
    t[1, 0] = 0; t[1, 1] = 1; t[1, 2] = 0;
    t[2, 0] = 1; t[2, 1] = 1; t[2, 2] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
    t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2] + t[n - 2, 0];
    t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 2, 1];
    TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]]
    Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]]   (* A247301 *)

Formula

(row 0, the bottom row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 1, r(1) = 0, r(2) = 1, r(3) = 1;
(row 1, the middle row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 2, r(2) = 1, r(3) = 2;
(row 2, the top row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 0, r(2) = 1, r(3) = 2.
From Chai Wah Wu, Jan 24 2020: (Start)
a(n) = 2*a(n-6) + 2*a(n-9) for n > 14.
G.f.: (-x^14 - 2*x^11 + x^9 - x^8 - x^7 + x^6 - x^4 - 1)/(2*x^9 + 2*x^6 - 1). (End)

A247311 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 2, 1, 4, 5, 3, 9, 12, 8, 21, 29, 20, 50, 70, 49, 120, 169, 119, 289, 408, 288, 697, 985, 696, 1682, 2378, 1681, 4060, 5741, 4059, 9801, 13860, 9800, 23661, 33461, 23660, 57122, 80782, 57121, 137904, 195025, 137903, 332929, 470832, 332928
Offset: 0

Views

Author

Clark Kimberling, Sep 12 2014

Keywords

Comments

Also, T(n,k) = number of strings s(0)..s(n) of integers such that s(0) = 0, s(n) = k, and for 0 < i <= n, s(i) is in {0,1,2}, and s(i) - s(i-1) is in {-1,0,1}.
(row 0, the bottom row): A024537;
(row 1, the middle row): A000129;
(row 2, the top row): A048739;
(n-th column sum): A000129.

Examples

			First 10 columns:
  0 .. 0 .. 1 .. 3 .. 8 ... 20 .. 49 .. 119 .. 288 .. 696
  0 .. 1 .. 2 .. 5 .. 12 .. 29 .. 70 .. 169 .. 408 .. 985
  1 .. 1 .. 2 .. 4 .. 9 ... 21 .. 50 .. 120 .. 289 .. 697
T(3,2) counts these 3 paths, given as vector sums applied to (0,0):
  (1,1) + (1,1) + (1,0); (1,1) + (1,0) + (1,1); (1,0) + (1,1) + (1,1).
		

Crossrefs

Programs

  • Mathematica
    t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 0;
    t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1];
    t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2];
    t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 1, 2]
    TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (*  array *)
    Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247311 *)

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.
Previous Showing 11-13 of 13 results.