cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A095214 a(n) = floor((Pi/sqrt(2))^n).

Original entry on oeis.org

1, 2, 4, 10, 24, 54, 120, 266, 593, 1317, 2926, 6501, 14441, 32081, 71266, 158315, 351688, 781255, 1735512, 3855339, 8564410, 19025337, 42263673, 93886277, 208562871, 463310210, 1029216515, 2286344247, 5078979923, 11282656623
Offset: 0

Views

Author

Jason Earls, Jun 22 2004

Keywords

Crossrefs

Cf. A247719 (Pi/sqrt(2)).

Programs

  • Magma
    R:= RealField(20); [Floor((Pi(R)/Sqrt(2))^n): n in [0..30]]; // G. C. Greubel, Sep 27 2018
  • Mathematica
    Floor[(Pi/Sqrt[2])^Range[0,30]] (* Harvey P. Dale, May 12 2014 *)
  • PARI
    vector(30, n, n--; floor((Pi/sqrt(2))^n)) \\ G. C. Greubel, Sep 27 2018
    

A256924 Decimal expansion of log(Pi/sqrt(2)).

Original entry on oeis.org

7, 9, 8, 1, 5, 6, 2, 9, 5, 5, 6, 9, 4, 2, 7, 5, 1, 9, 4, 3, 4, 8, 1, 1, 2, 9, 0, 6, 2, 3, 9, 7, 0, 4, 2, 7, 6, 0, 9, 5, 4, 4, 7, 4, 5, 7, 3, 5, 1, 8, 3, 9, 4, 4, 4, 5, 3, 2, 8, 3, 0, 6, 6, 7, 2, 5, 4, 4, 0, 9, 5, 8, 8, 9, 9, 9, 7, 8, 7, 2, 1, 9, 8, 0, 6, 9, 1, 6, 0, 6, 7, 7, 7, 2, 8, 0, 3, 6, 3, 9, 3, 1, 0, 0, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Comments

Previous name, "Decimal expansion of Sum_{k>=1} (zeta(2k)/k)*(2/3)^(2k)", was wrong. See A377008 for the correct sequence with this name. - Amiram Eldar, Oct 12 2024

Examples

			0.798156295569427519434811290623970427609544745735183944453283...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Pi/Sqrt[2]], 10, 105] // First
  • PARI
    log(Pi/sqrt(2))

Formula

Equals log(A247719).

Extensions

Name corrected by Amiram Eldar, Oct 12 2024

A380141 Decimal expansion of the real part of (-1)^sqrt(i), negated, where i is the imaginary unit.

Original entry on oeis.org

0, 6, 5, 6, 8, 9, 7, 6, 4, 7, 3, 5, 1, 5, 3, 5, 3, 2, 0, 9, 0, 2, 6, 6, 8, 7, 9, 9, 6, 7, 6, 6, 1, 0, 1, 0, 3, 3, 6, 5, 0, 8, 9, 1, 5, 3, 4, 7, 5, 0, 3, 9, 9, 9, 6, 8, 5, 7, 0, 0, 4, 6, 9, 9, 0, 6, 3, 7, 1, 3, 2, 9, 1, 5, 2, 3, 9, 9, 2, 2, 9, 0, 3, 5, 6, 0, 4, 6
Offset: 0

Views

Author

Hugo Pfoertner, Jan 23 2025

Keywords

Examples

			0.0656897647351535320902668799676610103365089153475...
		

Crossrefs

A380142 is the imaginary part.
Cf. A247719.

Programs

  • Maple
    evalf[140](-Re((-1)^sqrt(I)));  # Alois P. Heinz, Jan 23 2025
  • Mathematica
    Prepend[RealDigits[Re[(-1)^Sqrt[I]], 10, 87][[1]], 0] (* Shenghui Yang, Jan 23 2025 *)
  • PARI
    real((-1)^sqrt(I))

Formula

Equals -cos(Pi/sqrt(2))/exp(Pi/sqrt(2)).

A318614 Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n).

Original entry on oeis.org

1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040
Offset: 1

Views

Author

Bradley Klee, Aug 30 2018

Keywords

Comments

Area interior to the central loop of u = 2*H = x^2 + y^2 - (1/2)*(x^4 + y^4) equals to Pi*S(u), when u in [0,1/2].

Examples

			Singular Value: S(1/2) = 1/sqrt(2).
N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N.
  n  |                  u
==================================================
  0  |  0.08544689553344134756293807606337...
  1  |  0.23840989875904155311088418238272...
  2  |  0.36638282702449450473835851051425...
  3  |  0.46595506694324457665483887176081...
		

References

  • E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
  • Mathematica
    RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}]

Formula

(n-1)^2*n*a(n) - 12*(n-1)*(2*n-3)^2*a(n-1) + 128*(n-2)*(2*n-5)*(2*n-3)*a(n-2) == 0.
a(n) = A000108(n-1)*A098410(n-1).
Previous Showing 11-14 of 14 results.