cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A099884 XOR difference triangle of the powers of 2, read by rows; Square array A(row,col): A(0,col) = 2^col, A(row,col) = A048724(A(row-1, col)) for row > 0, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 15, 16, 24, 20, 30, 17, 32, 48, 40, 60, 34, 51, 64, 96, 80, 120, 68, 102, 85, 128, 192, 160, 240, 136, 204, 170, 255, 256, 384, 320, 480, 272, 408, 340, 510, 257, 512, 768, 640, 960, 544, 816, 680, 1020, 514, 771, 1024, 1536, 1280, 1920
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

Define an "XOR difference triangle" for a sequence A by the following process. Start with A in the leftmost column. Generate the next column by performing the XOR operation between adjacent terms of the prior column. Repeat this process to generate the XOR difference triangle for A. Further, we define the "XOR BINOMIAL transform" of A as the main diagonal in the XOR difference triangle for A. The XOR BINOMIAL transform is its self-inverse. Let a sequence B be the XOR BINOMIAL transform of A, then we may express B by: B(n) = SumXOR_{k=0..n} A047999(n,k)*A(k), which is equivalent to: B(n) = (C(n,0)mod 2)*A(0) XOR (C(n,1)mod 2)*A(1) XOR (C(n,2)mod 2)*A(2) XOR ... XOR (X(n,n)mod 2)*A(n), where the coefficients are C(n,k)(mod 2) = A047999(n,k).
This sequence is a rearrangement of the numbers which are 2^k times distinct Fermat numbers (numbers of the form 2^(2^m) + 1). This matches the sizes of polygons constructible with compass and straightedge (A003401) up to 2^32+1, which is the first nonprime Fermat number. - Franklin T. Adams-Watters, Jun 16 2006

Examples

			The main diagonal equals A001317 (Pascal's triangle mod 2 in decimal):
{1,3,5,15,17,51,85,255,257,771,1285,3855,...}, and defines the XOR BINOMIAL transform of the powers of 2.
Rows begin:
  1;
  2, 3;
  4, 6, 5;
  8, 12, 10, 15;
  16, 24, 20, 30, 17;
  32, 48, 40, 60, 34, 51;
  64, 96, 80, 120, 68, 102, 85;
  128, 192, 160, 240, 136, 204, 170, 255;
  256, 384, 320, 480, 272, 408, 340, 510, 257;
  512, 768, 640, 960, 544, 816, 680, 1020, 514, 771;
  1024, 1536, 1280, 1920, 1088, 1632, 1360, 2040, 1028, 1542, 1285;
  2048, 3072, 2560, 3840, 2176, 3264, 2720, 4080, 2056, 3084, 2570, 3855;
  ...
From _Antti Karttunen_, Sep 19 2016: (Start)
Viewed as a square array, the top left corner looks like this:
     1,    2,     4,     8,    16,     32,     64,    128
     3,    6,    12,    24,    48,     96,    192,    384
     5,   10,    20,    40,    80,    160,    320,    640
    15,   30,    60,   120,   240,    480,    960,   1920
    17,   34,    68,   136,   272,    544,   1088,   2176
    51,  102,   204,   408,   816,   1632,   3264,   6528
    85,  170,   340,   680,  1360,   2720,   5440,  10880
   255,  510,  1020,  2040,  4080,   8160,  16320,  32640
   257,  514,  1028,  2056,  4112,   8224,  16448,  32896
   771, 1542,  3084,  6168, 12336,  24672,  49344,  98688
  1285, 2570,  5140, 10280, 20560,  41120,  82240, 164480
  3855, 7710, 15420, 30840, 61680, 123360, 246720, 493440
  4369, 8738, 17476, 34952, 69904, 139808, 279616, 559232
  ...
(End)
The square array shown above can be viewed as a subtable of a multiplication table with particular relevance to the carryless multiplication defined by A048720, as the first column gives the A048720 powers of 3 (and the first row gives powers of 2, which are the same as in standard arithmetic). - _Peter Munn_, Jan 13 2020
		

Crossrefs

Essentially GF(2)[X] analog of table A036561. - Antti Karttunen, Jan 18 2020
Cf. A047999, A158875 (row sums).
Cf. A000079 (first column of triangular table, the topmost row of square array).
Cf. A001317 (the rightmost diagonal of triangular table, the leftmost column of square array).
Cf. A099885, A117998 (central diagonals).
Cf. A276618 (transpose), A091202, A193231.

Programs

  • Mathematica
    a[n_]:= Sum[Mod[Binomial[n, i], 2]*2^i, {i, 0, n}]; T[n_, k_]:=2^(n - k)a[k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    {T(n,k)=local(B);B=0;for(i=0,k,B=bitxor(B,binomial(k,i)%2*2^(n-i)));B}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Python
    from sympy import binomial
    def a(n):
        return sum((binomial(n, i)%2)*2**i for i in range(n + 1))
    def T(n, k): return 2**(n - k)*a(k)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A099884 n) (A099884bi (A002262 n) (A025581 n)))
    ;; Then use either this recurrence:
    (define (A099884bi row col) (if (zero? row) (A000079 col) (A048724 (A099884bi (- row 1) col))))
    ;; or this one:
    (define (A099884bi row col) (if (zero? col) (A001317 row) (* 2 (A099884bi row (- col 1)))))
    ;; Antti Karttunen, Sep 19 2016
    

Formula

T(n, k) = 2^(n-k)*A001317(k). T(n, n) = A001317(n) = SumXOR_{k=0..n} A047999(n, k)*2^k, where SumXOR is the analog of summation under the binary XOR operation.
From Antti Karttunen, Sep 19 2016: (Start)
When viewed as a square array A(row,col), with row >= 0, col >= 0, the following recurrences and formulas are valid:
A(0,col) = A000079(col), for row > 0, A(row,col) = A048724(A(row-1, col)).
A(row,0) = A001317(row), for col > 0, A(row,col) = 2*A(row,col-1).
A(row,col) = A248663(A066117(row+1,col+1)) = A048675(A255483(row,col+1)).
(End)
With the definitions from Antti Karttunen above, A(row+1, col) = A048720(3, A(row, col)). - Peter Munn, Jan 13 2020
A(n,k) = A193231(A(k,n)) = A091202(A036561(n,k)). - Antti Karttunen, Jan 18 2020

Extensions

Square array interpretation added as a second, alternative description by Antti Karttunen, Sep 19 2016

A293214 a(n) = Product_{d|n, dA019565(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 36, 2, 30, 12, 60, 2, 2700, 2, 180, 120, 210, 2, 7560, 2, 6300, 360, 252, 2, 661500, 20, 420, 168, 94500, 2, 23814000, 2, 2310, 504, 132, 600, 43659000, 2, 396, 840, 2425500, 2, 187110000, 2, 207900, 352800, 1980, 2, 560290500, 60, 194040, 264, 485100, 2, 115259760, 840, 254677500, 792, 4620, 2, 264737261250000, 2, 13860
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A001065, A002110, A019565, A048675, A091954, A292257, A293215 (restricted growth sequence transform).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A293214(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d).
a(n) = A300830(n) * A300831(n) * A300832(n). - Antti Karttunen, Mar 16 2018
Other identities.
For n >= 0, a(2^n) = A002110(n).
For n >= 1:
A048675(a(n)) = A001065(n).
A001222(a(n)) = A292257(n).
A007814(a(n)) = A091954(n).
A087207(a(n)) = A218403(n).
A248663(a(n)) = A227320(n).

A293442 Multiplicative with a(p^e) = A019565(e).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 6, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 12, 3, 4, 6, 6, 2, 8, 2, 10, 4, 4, 4, 9, 2, 4, 4, 12, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 12, 4, 12, 4, 4, 2, 12, 2, 4, 6, 15, 4, 8, 2, 6, 4, 8, 2, 18, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 12, 2, 12, 4, 6, 4, 4, 4, 20, 2, 6, 6, 9, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2017

Keywords

Comments

From Peter Munn, Apr 06 2021: (Start)
a(n) is determined by the prime signature of n.
Compare with the multiplicative, self-inverse A225546, which also maps 2^e to the squarefree number A019565(e). However, this sequence maps p^e to the same squarefree number for every prime p, whereas A225546 maps the e-th power of progressively larger primes to progressively greater powers of A019565(e).
Both sequences map powers of squarefree numbers to powers of squarefree numbers.
(End)

Crossrefs

Sequences used in a definition of this sequence: A000188, A003961, A019565, A028234, A059895, A067029, A162642.
Sequences with related definitions: A225546, A293443, A293444.
Cf. also A293214.
Sequences used to express relationship between terms of this sequence: A006519, A007913, A008833, A064989, A334747.
Sequences related via this sequence: (A001222, A048675, A064547), (A007814, A162642), (A087207, A267116), (A248663, A268387).

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Apply[Times, Prime@ Flatten@ Position[Reverse@ IntegerDigits[Last@ #, 2], 1]] * f[n/Apply[Power, #]] &@ FactorInteger[n][[1]]]; Array[f, 105] (* Michael De Vlieger, Oct 31 2017 *)

Formula

a(1) = 1; for n > 1, a(n) = A019565(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
a(a(n)) = A293444(n).
A048675(a(n)) = A001222(n).
A001222(a(n)) = A064547(n) = A048675(A293444(n)).
A007814(a(n)) = A162642(n).
A087207(a(n)) = A267116(n).
A248663(a(n)) = A268387(n).
From Peter Munn, Mar 14 2021: (Start)
Alternative definition: a(1) = 1; a(2) = 2; a(n^2) = A003961(a(n)); a(A003961(n)) = a(n); if A059895(n, k) = 1, a(n*k) = a(n) * a(k).
For n >= 3, a(n) < n.
a(2n) = A334747(a(A006519(n))) * a(n/A006519(n)), where A006519(n) is the largest power of 2 dividing n.
a(2n+1) = a(A064989(2n+1)).
a(n) = a(A007913(n)) * a(A008833(n)) = 2^A162642(n) * A003961(a(A000188(n))).
(End)

A297845 Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Jan 10 2018

Keywords

Comments

For any number n > 0, let f(n) be the polynomial in a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials in a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).
This table has many similarities with A248601.
For any n > 0 and m > 0, f(n * m) = f(n) + f(m).
Also, f(1) = 0 and f(2) = 1.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
See A297473 for the main diagonal of T.
As a binary operation, T(.,.) is related to A306697(.,.) and A329329(.,.). When their operands are terms of A050376 (sometimes called Fermi-Dirac primes) the three operations give the same result. However the rest of the multiplication table for T(.,.) can be derived from these results because T(.,.) distributes over integer multiplication (A003991), whereas for A306697 and A329329, the equivalent derivation uses distribution over A059896(.,.) and A059897(.,.) respectively. - Peter Munn, Mar 25 2020
From Peter Munn, Jun 16 2021: (Start)
The operation defined by this sequence can be extended to be the multiplicative operator of a ring over the positive rationals that is isomorphic to the polynomial ring Z[x]. The extended function f (described in the author's original comments) is the isomorphism we use, and it has the same relationship with the extended operation that exists between their unextended equivalents.
Denoting this extension of T(.,.) as t_Q(.,.), we get t_Q(n, 1/k) = t_Q(1/n, k) = 1/T(n, k) and t_Q(1/n, 1/k) = T(n, k) for positive integers n and k. The result for other rationals is derived from the distributive property: t_Q(q, r*s) = t_Q(q, r) * t_Q(q, s); t_Q(q*r, s) = t_Q(q, s) * t_Q(r, s). This may look unusual because standard multiplication of rational numbers takes on the role of the ring's additive group.
There are many OEIS sequences that can be shown to be a list of the integers in an ideal of this ring. See the cross-references.
There are some completely additive sequences that similarly define by extension completely additive functions on the positive rationals that can be shown to be homomorphisms from this ring onto the integer ring Z, and these functions relate to some of the ideals. For example, the extended function of A048675, denoted A048675_Q, maps i/j to A048675(i) - A048675(j) for positive integers i and j. For any positive integer k, the set {r rational > 0 : k divides A048675_Q(r)} forms an ideal of the ring; for k=2 and k=3 the integers in this ideal are listed in A003159 and A332820 respectively.
(End)

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8    9    10
  ---+------------------------------------------------
    1|  1   1   1    1    1    1    1     1    1     1  -> A000012
    2|  1   2   3    4    5    6    7     8    9    10  -> A000027
    3|  1   3   5    9    7   15   11    27   25    21  -> A003961
    4|  1   4   9   16   25   36   49    64   81   100  -> A000290
    5|  1   5   7   25   11   35   13   125   49    55  -> A357852
    6|  1   6  15   36   35   90   77   216  225   210  -> A191002
    7|  1   7  11   49   13   77   17   343  121    91
    8|  1   8  27   64  125  216  343   512  729  1000  -> A000578
    9|  1   9  25   81   49  225  121   729  625   441
   10|  1  10  21  100   55  210   91  1000  441   550
From _Peter Munn_, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
   n      f(n)        n           f(n)
   1         0       16              4
   2         1       17            x^6
   3         x       21        x^3 + x
   4         2       25           2x^2
   5       x^2       27             3x
   6     x + 1       35      x^3 + x^2
   7       x^3       36         2x + 2
   8         3       49           2x^3
   9        2x       55      x^4 + x^2
  10   x^2 + 1       64              6
  11       x^4       77      x^4 + x^3
  12     x + 2       81             4x
  13       x^5       90   x^2 + 2x + 1
  15   x^2 + x       91      x^5 + x^3
(End)
		

Crossrefs

Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Related binary operations: A003991, A306697/A059896, A329329/A059897.

Programs

  • PARI
    T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))

Formula

T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A001222(T(n, k)) = A001222(n) * A001222(k),
- A055396(T(n, k)) = A055396(n) + A055396(k) - 1 when n > 1 and k > 1,
- A061395(T(n, k)) = A061395(n) + A061395(k) - 1 when n > 1 and k > 1,
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(A000040(n)^i, A000040(k)^j) = A000040(n + k - 1)^(i * j) for any i >= 0 and j >= 0.
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
A104244(m, T(n, k)) = A104244(m, n) * A104244(m, k).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
A195017(T(n, k)) = A195017(n) * A195017(k).
A248663(T(n, k)) = A048720(A248663(n), A248663(k)).
T(n, k) = A306697(n, k) if and only if T(n, k) = A329329(n, k).
A007913(T(n, k)) = A007913(T(A007913(n), A007913(k))) = A007913(A329329(n, k)).
(End)

Extensions

New name from Peter Munn, Jul 17 2021

A264977 a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 5, 2, 7, 12, 1, 14, 15, 16, 13, 10, 7, 4, 5, 14, 11, 24, 13, 2, 15, 28, 1, 30, 31, 32, 29, 26, 7, 20, 13, 14, 3, 8, 1, 10, 11, 28, 5, 22, 19, 48, 21, 26, 15, 4, 13, 30, 19, 56, 29, 2, 31, 60, 1, 62, 63, 64, 61, 58, 7, 52, 29, 14, 19, 40, 25, 26, 3, 28, 13, 6, 11, 16, 9, 2, 11, 20, 1, 22
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2015

Keywords

Comments

a(n) is the n-th Stern polynomial (cf. A260443, A125184) evaluated at X = 2 over the field GF(2).
For n >= 1, a(n) gives the index of the row where n occurs in array A277710.

Examples

			In this example, binary numbers are given zero-padded to four bits.
a(2) = 2a(1) = 2 * 1 = 2.
a(3) = a(1) XOR a(2) = 1 XOR 2 = 0001 XOR 0010 = 0011 = 3.
a(4) = 2a(2) = 2 * 2 = 4.
a(5) = a(2) XOR a(3) = 2 XOR 3 = 0010 XOR 0011 = 0001 = 1.
a(6) = 2a(3) = 2 * 3 = 6.
a(7) = a(3) XOR a(4) = 3 XOR 4 = 0011 XOR 0100 = 0111 = 7.
		

Crossrefs

Cf. A023758 (the fixed points).
Cf. also A068156, A168081, A265407.
Cf. A277700 (binary weight of terms).
Cf. A277701, A277712, A277713 (positions of 1's, 2's and 3's in this sequence).
Cf. A277711 (position of the first occurrence of each n in this sequence).
Cf. also arrays A277710, A099884.

Programs

  • Mathematica
    recurXOR[0] = 0; recurXOR[1] = 1; recurXOR[n_] := recurXOR[n] = If[EvenQ[n], 2recurXOR[n/2], BitXor[recurXOR[(n - 1)/2 + 1], recurXOR[(n - 1)/2]]]; Table[recurXOR[n], {n, 0, 100}] (* Jean-François Alcover, Oct 23 2016 *)
  • Python
    class Memoize:
        def _init_(self, func):
            self.func=func
            self.cache={}
        def _call_(self, arg):
            if arg not in self.cache:
                self.cache[arg] = self.func(arg)
            return self.cache[arg]
    @Memoize
    def a(n): return n if n<2 else 2*a(n//2) if n%2==0 else a((n - 1)//2)^a((n + 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 27 2017

Formula

a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).
a(n) = A248663(A260443(n)).
a(n) = A048675(A277330(n)). - Antti Karttunen, Oct 27 2016
Other identities. For all n >= 0:
a(n) = n - A265397(n).
From Antti Karttunen, Oct 28 2016: (Start)
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A010873(a(n)) = A010873(n). [a(n) mod 4 = n mod 4.]
A001511(a(n)) = A001511(n) = A055396(A277330(n)). [In general, the 2-adic valuation of n is preserved.]
A010060(a(n)) = A011655(n).
a(n) <= n.
For n >= 2, a((2^n)+1) = (2^n) - 3.
The following two identities are so far unproved:
For n >= 2, a(3*A000225(n)) = a(A068156(n)) = 5.
For n >= 2, a(A068156(n)-2) = A062709(n) = 2^n + 3.
(End)

A275734 Prime-factorization representations of "factorial base slope polynomials": a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).

Original entry on oeis.org

1, 2, 3, 6, 2, 4, 5, 10, 15, 30, 10, 20, 3, 6, 9, 18, 6, 12, 2, 4, 6, 12, 4, 8, 7, 14, 21, 42, 14, 28, 35, 70, 105, 210, 70, 140, 21, 42, 63, 126, 42, 84, 14, 28, 42, 84, 28, 56, 5, 10, 15, 30, 10, 20, 25, 50, 75, 150, 50, 100, 15, 30, 45, 90, 30, 60, 10, 20, 30, 60, 20, 40, 3, 6, 9, 18, 6, 12, 15, 30, 45, 90, 30, 60, 9, 18, 27
Offset: 0

Views

Author

Antti Karttunen, Aug 08 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of nonzero digits that occur on the slope (k-1) levels below the "maximal slope" in the factorial base representation of n. See A275811 for the definition of the "digit slopes" in this context.

Examples

			For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus a(23) = prime(1)^3 = 2^3 = 8.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus a(29) = prime(1)^2 * prime(4)^1 = 2*7 = 28.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus a(37) = prime(1) * prime(2) * prime(4) = 2*3*7 = 42.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus a(55) = prime(1)^1 * prime(3)^2 = 2*25 = 50.
		

Crossrefs

Cf. A275811.
Cf. A275804 (indices of squarefree terms), A275805 (of terms not squarefree).
Cf. also A275725, A275733, A275735, A276076 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

  • Python
    from operator import mul
    from sympy import prime, factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum(int(y[i])*f(i + 1) for i in range(len(y))) def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).
Other identities and observations. For all n >= 0:
a(n) = A275735(A225901(n)).
a(A007489(n)) = A002110(n).
A001221(a(n)) = A060502(n).
A001222(a(n)) = A060130(n).
A007814(a(n)) = A260736(n).
A051903(a(n)) = A275811(n).
A048675(a(n)) = A275728(n).
A248663(a(n)) = A275808(n).
A056169(a(n)) = A275946(n).
A056170(a(n)) = A275947(n).
A275812(a(n)) = A275962(n).

A277324 Odd bisection of A260443 (the even terms): a(n) = A260443((2*n)+1).

Original entry on oeis.org

2, 6, 18, 30, 90, 270, 450, 210, 630, 6750, 20250, 9450, 15750, 47250, 22050, 2310, 6930, 330750, 3543750, 1653750, 4961250, 53156250, 24806250, 727650, 1212750, 57881250, 173643750, 18191250, 8489250, 25467750, 2668050, 30030, 90090, 40020750, 1910081250, 891371250, 9550406250, 455814843750, 212713593750
Offset: 0

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

From David A. Corneth, Oct 22 2016: (Start)
The exponents of the prime factorization of a(n) are first nondecreasing, then nonincreasing.
The exponent of 2 in the prime factorization of a(n) is 1. (End)

Examples

			A method to find terms of this sequence, explained by an example to find a(7). To find k = a(7), we find k such that A048675(k) = 2*7+1 = 15. 7 has the binary partitions: {[7, 0, 0], [5, 1, 0], [3, 2, 0], [1, 3, 0], [3, 0, 1], [1, 1, 1]}. To each of those, we prepend a 1. This gives the binary partitions of 15 starting with a 1. For example, for the first we get [1, 7, 0, 0]. We see that only [1, 5, 1, 0], [1, 3, 2, 0] and [1, 1, 1, 1] start nondecreasing, then nonincreasing, so we only check those. These numbers will be the exponents in a prime factorization. [1, 5, 1, 0] corresponds to prime(1)^1 * prime(2)^5 * prime(3)^1 * prime(4)^0 = 2430. We find that [1, 1, 1, 1] gives k = 210 for which A048675(k) = 15 so a(7) = 210. - _David A. Corneth_, Oct 22 2016
		

Crossrefs

Cf. A277200 (same sequence sorted into ascending order).

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n + 1], {n, 0, 38}] (* Michael De Vlieger, Apr 05 2017 *)
  • Python
    from sympy import factorint, prime, primepi
    from operator import mul
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    def a260443(n): return n + 1 if n<2 else a003961(a260443(n//2)) if n%2==0 else a260443((n - 1)//2)*a260443((n + 1)//2)
    def a(n): return a260443(2*n + 1)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017

Formula

a(n) = A260443((2*n)+1).
a(0) = 2; for n >= 1, a(n) = A260443(n) * A260443(n+1).
Other identities. For all n >= 0:
A007949(a(n)) = A005811(n). [See comments in A125184.]
A156552(a(n)) = A277189(n), a(n) = A005940(1+A277189(n)).
A048675(a(n)) = 2n + 1. - David A. Corneth, Oct 22 2016
A001222(a(n)) = A007306(1+n).
A056169(a(n)) = A284267(n).
A275812(a(n)) = A284268(n).
A248663(a(n)) = A283975(n).
A000188(a(n)) = A283484(n).
A247503(a(n)) = A284563(n).
A248101(a(n)) = A284564(n).
A046523(a(n)) = A284573(n).
a(n) = A277198(n) * A284008(n).
a(n) = A284576(n) * A284578(n) = A284577(n) * A000290(A284578(n)).

Extensions

More linking formulas added by Antti Karttunen, Apr 16 2017

A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.

Original entry on oeis.org

1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2017

Keywords

Comments

This sequence is a variant of A256739; both sequences have nice graphical features.
Replacing "SumXOR" by "Sum" in the name leads to the Jordan function J_2 (A007434).
For any sequence f of nonnegative integers with positive indices:
- let x_f be the unique sequence satisfying SumXOR_{d divides n} x_f(d) = f(n) for any n > 0,
- in particular, x_A000027 = A256739 and x_A000290 = a (this sequence),
- also, x_A178910 = A000027 and x_A055895 = A000079,
- see the links section for a gallery of x_f plots for some classic f functions,
- x_f(1) = f(1),
- x_f(p) = f(1) XOR f(p) for any prime p,
- x_f(n) = SumXOR_{d divides n and n/d is squarefree} f(d) for any n > 0,
- the function x: f -> x_f is a bijection,
- A000004 is the only fixed point of x (i.e. x_f = f if and only if f = A000004),
- for any sequence f, x_{2*f} = 2 * x_f,
- for any sequences g and f, x_{g XOR f} = x_g XOR x_f.
From Antti Karttunen, Dec 29 2017: (Start)
The transform x_f described above could be called "Xor-Moebius transform of f" because of its analogous construction to Möbius transform with A008683 replaced by A008966 and the summation replaced by cumulative XOR.
(End)

Crossrefs

Programs

  • PARI
    a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)

Formula

a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.

A104244 Suppose m = Product_{i=1..k} p_i^e_i, where p_i is the i-th prime number and each e_i is a nonnegative integer. Then we can define P_m(x) = Sum_{i=1..k} e_i*x^(i-1). The sequence is the square array A(n,m) = P_m(n) read by descending antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 2, 3, 1, 0, 2, 4, 2, 4, 1, 0, 1, 3, 9, 2, 5, 1, 0, 3, 8, 4, 16, 2, 6, 1, 0, 2, 3, 27, 5, 25, 2, 7, 1, 0, 2, 4, 3, 64, 6, 36, 2, 8, 1, 0, 1, 5, 6, 3, 125, 7, 49, 2, 9, 1, 0, 3, 16, 10, 8, 3, 216, 8, 64, 2, 10, 1, 0, 1, 4, 81, 17, 10, 3, 343, 9, 81, 2, 11, 1, 0, 2, 32, 5
Offset: 1

Views

Author

Olaf Voß, Feb 26 2005

Keywords

Comments

From Antti Karttunen, Jul 29 2015: (Start)
The square array A(row,col) is read by downwards antidiagonals as: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
A(n,m) (entry at row=n, column=m) gives the evaluation at x=n of the polynomial (with nonnegative integer coefficients) bijectively encoded in the prime factorization of m. See A206284, A206296 for the details of that encoding. (The roles of variables n and m were accidentally swapped in this description, corrected by Antti Karttunen, Oct 30 2016)
(End)
Each row is a completely additive sequence, row n mapping prime(m) to n^(m-1). - Peter Munn, Apr 22 2022

Examples

			a(13) = 3 because 3 = p_1^0 * p_2^1 * p_3^0 * ..., so P_3(x) = 0*x^(1-1) + 1*x^(2-1) + 0*x^(3-1) + ... = x. Hence a(13) = A(3,3) = P_3(3) = 3. [Elaborated by _Peter Munn_, Aug 13 2022]
The top left corner of the array:
0, 1,  1, 2,   1,  2,   1,  3,  2,   2,     1,  3,      1,    2,   2, 4
0, 1,  2, 2,   4,  3,   8,  3,  4,   5,    16,  4,     32,    9,   6, 4
0, 1,  3, 2,   9,  4,  27,  3,  6,  10,    81,  5,    243,   28,  12, 4
0, 1,  4, 2,  16,  5,  64,  3,  8,  17,   256,  6,   1024,   65,  20, 4
0, 1,  5, 2,  25,  6,  125, 3, 10,  26,   625,  7,   3125,  126,  30, 4
0, 1,  6, 2,  36,  7,  216, 3, 12,  37,  1296,  8,   7776,  217,  42, 4
0, 1,  7, 2,  49,  8,  343, 3, 14,  50,  2401,  9,  16807,  344,  56, 4
0, 1,  8, 2,  64,  9,  512, 3, 16,  65,  4096, 10,  32768,  513,  72, 4
0, 1,  9, 2,  81, 10,  729, 3, 18,  82,  6561, 11,  59049,  730,  90, 4
0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4
...
		

Crossrefs

Cf. A000720.
Transpose: A104245.
Main diagonal: A090883.
Row 1: A001222, row 2: A048675, row 3: A090880, row 4: A090881, row 5: A090882, row 10: A054841; and, in the extrapolated table, row 0: A007814, row -1: A195017.
Other completely additive sequences with prime(k) mapped to a function of k include k: A056239, k-1: A318995, k+1: A318994, k^2: A289506, 2^k-1: A293447, k!: A276075, F(k-1): A265753, F(k-2): A265752.
For completely additive sequences with primes p mapped to a function of p, see A001414.
For completely additive sequences where some primes are mapped to 1, the rest to 0 (notably, some ruler functions) see the cross-references in A249344.
For completely additive sequences, s, with primes p mapped to a function of s(p-1) and maybe s(p+1), see A352957.
See the formula section for the relationship to A073133, A206296.
See the comments for the relevance of A206284.
A297845 represents multiplication of the relevant polynomials.
Cf. A090884, A248663, A265398, A265399 for other related sequences.
A167219 lists columns that contain their own column number.

Formula

A(n,A206296(k)) = A073133(n,k). [This formula demonstrates how this array can be used with appropriately encoded polynomials. Note that A073133 reads its antidiagonals by ascending order, while here the order is opposite.] - Antti Karttunen, Oct 30 2016
From Peter Munn, Apr 05 2021: (Start)
The sequence is defined by the following identities:
A(n, 3) = n;
A(n, m*k) = A(n, m) + A(n, k);
A(n, A297845(m, k)) = A(n, m) * A(n, k).
(End)

Extensions

Starting offset changed from 0 to 1 by Antti Karttunen, Jul 29 2015
Name edited (and aligned with rest of sequence) by Peter Munn, Apr 23 2022

A068052 Start from 1, shift one left and sum mod 2 (bitwise-XOR) to get 3 (11 in binary), then shift two steps left and XOR to get 15 (1111 in binary), then three steps and XOR to get 119 (1110111 in binary), then four steps and so on.

Original entry on oeis.org

1, 3, 15, 119, 1799, 59367, 3743271, 481693095, 123123509927, 62989418816679, 64491023022979239, 132015402419352060071, 540829047855347718631591, 4430403202865824763042320551, 72583450474242118015031400337575, 2378466805556971511916001231449723047
Offset: 0

Views

Author

Antti Karttunen, Feb 13 2002

Keywords

Comments

a(n) = each row of A053632 reduced mod 2 and interpreted as a binary number.

Crossrefs

Same sequence shown in binary: A068053.

Programs

  • Maple
    with(gfun,seriestolist); [seq(foo(map(`mod`,seriestolist(series(mul(1+(z^i),i=1..n),z,binomial(n+1,2)+1)),2)), n=0..20)];
    foo := proc(a) local i; add(a[i]*2^(i-1),i=1..nops(a)); end;
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          (t-> Bits[Xor](2^n*t, t))(a(n-1)))
        end:
    seq(a(n), n=0..16);  # Alois P. Heinz, Mar 07 2024
  • Mathematica
    FoldList[BitXor[#, #*#2]&, 1, 2^Range[20]] (* Paolo Xausa, Mar 07 2024 *)
  • PARI
    a(n) = if(n<1, 1, bitxor(a(n - 1), 2^n*a(n - 1))); \\ Indranil Ghosh, Apr 15 2017, after formula by Antti Karttunen

Formula

a(0) = 1; for n > 0, a(n) = a(n-1) XOR (2^n)*a(n-1), where XOR is bitwise-XOR (A003987).
a(n) = A248663(A285101(n)) = A048675(A285102(n)).
A000120(a(n)) = A285103(n). [Number of ones in binary representation.]
A080791(a(n)) = A285105(n). [Number of nonleading zeros.]

Extensions

Formulas added by Antti Karttunen, Apr 15 2017
Previous Showing 11-20 of 34 results. Next