cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A249820 a(1) = 0 and for n > 1: a(n) = A249810(n) - A078898(n) = A078898(A003961(n)) - A078898(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 2, 0, -1, 0, 6, 0, 4, 0, 1, 0, -4, 0, 11, 0, -4, 4, 3, 0, 3, 0, 25, -1, -7, 0, 20, 0, -7, -1, 12, 0, 7, 0, -2, 4, -8, 0, 44, 0, 0, -2, 0, 0, 36, 0, 22, -2, -13, 0, 23, 0, -12, 8, 90, 0, 0, 0, -5, -2, 4, 0, 77, 0, -16, 4, -3, 0, 4, 0, 55, 28, -19, 0, 41, 0, -19, -4, 15, 0, 43, 0, -2, -3, -20, 0, 155, 0, 12, 5, 24, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2014

Keywords

Comments

a(n) tells how many columns off A003961(n) is from the column where n is in square array A083221 (Cf. A083140, the sieve of Eratosthenes. The column index of n in that table is given by A078898(n)).

Examples

			For n = 8 = 2*2*2, A003961(8) = 27 (3*3*3), and while 8 is on row 1 and column 4 of A083221, 27 on the next row is in column 5, thus a(8) = 5 - 4 = 1.
For n = 10 = 2*5, A003961(10) = 21 (3*7), and while 10 is on row 1 and column 5 of A083221, 21 on the next row is in column 4, thus a(10) = 4 - 5 = -1.
		

Crossrefs

Programs

Formula

a(n) = A249810(n) - A078898(n) = A078898(A003961(n)) - A078898(n).
a(k) = 0 when k is a prime or square of prime, among some other numbers.

A250477 Number of times prime(n) (the n-th prime) occurs as the least prime factor among numbers 1 .. (prime(n)^2 * prime(n+1)): a(n) = A078898(A251720(n)).

Original entry on oeis.org

6, 8, 12, 21, 33, 45, 63, 80, 116, 148, 182, 232, 265, 296, 356, 433, 490, 548, 625, 674, 740, 829, 919, 1055, 1187, 1252, 1313, 1376, 1446, 1657, 1897, 2029, 2134, 2301, 2484, 2605, 2785, 2946, 3110, 3301, 3439, 3654, 3869, 3978, 4086, 4349, 4811, 5147, 5273, 5395, 5604, 5787, 6049, 6403, 6684, 6954, 7153
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2014

Keywords

Comments

a(n) = Position of 6 on row n of array A249821. This is always larger than A250474(n), the position of 4 on row n, as 4 is guaranteed to be the first composite term on each row of A249821.
From Antti Karttunen, Mar 29 2015: (Start)
a(n) = 1 + number of positive integers <= (prime(n)*prime(n+1)) whose smallest prime factor is at least prime(n).
That a(n) > A250474(n) can also be seen by realizing that prime(n) must occur at least as many times as the smallest prime factor for the numbers in range 1 .. (prime(n)^2 * prime(n+1)) than for numbers in (smaller) range 1 .. (prime(n)^3), and also by realizing that a(n) cannot be equal to A250474(n) because each row of A249822 is a permutation of natural numbers.
Or more simply, by considering the comment given in A256447 which follows from the new interpretation given above.
(End)

Crossrefs

Column 6 of A249822. Cf. also A250474 (column 4), A250478 (column 8).
First differences: A256446. Cf. also A256447, A256448.

Programs

  • Mathematica
    f[n_] := Count[Range[Prime[n]^2*Prime[n + 1]], x_ /; Min[First /@ FactorInteger[x]] == Prime@ n]; Array[f, 20] (* Michael De Vlieger, Mar 30 2015 *)
  • PARI
    allocatemem(234567890);
    A002110(n) = prod(i=1, n, prime(i));
    A250477(n) = { my(m); m = (prime(n) * prime(n+1)); sumdiv(A002110(n-1), d, (moebius(d)*(m\d))); };
    for(n=1, 23, print1(A250477(n),", "));
    \\ A more practical program:
    
  • PARI
    allocatemem(234567890);
    vecsize = (2^24)-4;
    v020639 = vector(vecsize);
    v020639[1] = 1; for(n=2,vecsize, v020639[n] = vecmin(factor(n)[, 1]));
    A020639(n) = v020639[n];
    A250477(n) = { my(p=prime(n),q=prime(n+1),u=p*q,k=1,s=1); while(k <= u, if(A020639(k) >= p, s++); k++); s; };
    for(n=1, 564, write("b250477.txt", n, " ", A250477(n)));
    \\ Antti Karttunen, Mar 29 2015

Formula

a(n) = A078898(A251720(n)).
a(1) = 1, a(n) = Sum_{d | A002110(n-1)} moebius(d) * floor(A006094(n) / d). [Follows when A251720, (p_n)^2 * p_{n+1} is substituted to the similar formula given for A078898. Here p_n is the n-th prime (A000040(n)), A006094(n) gives the product p_n * p{n+1} and A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could use here also Liouville's lambda (A008836) instead of Moebius mu (A008683)].
a(n) = A250474(n) + A256447(n).

A249823 Permutation of natural numbers: a(n) = A246277(A084967(n)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 4, 19, 23, 6, 29, 31, 37, 41, 9, 43, 10, 47, 53, 14, 59, 61, 67, 15, 71, 73, 22, 79, 21, 26, 83, 89, 97, 101, 103, 107, 34, 33, 25, 8, 109, 113, 39, 127, 131, 35, 38, 137, 139, 46, 149, 51, 151, 157, 49, 163, 12, 167, 173, 58, 55, 179, 181, 191, 193, 57, 62, 65, 197, 74, 69, 77, 199, 211, 223, 227, 82, 229, 233, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A246277(A084967(n)).
As a composition of other permutations:
a(n) = A064216(A249745(n)).
a(n) = A249825(A250476(n)).

A249810 a(1) = 0, a(n) = A078898(A003961(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 5, 2, 4, 1, 8, 1, 6, 3, 14, 1, 13, 1, 11, 4, 7, 1, 23, 2, 9, 9, 17, 1, 18, 1, 41, 5, 10, 3, 38, 1, 12, 6, 32, 1, 28, 1, 20, 12, 15, 1, 68, 2, 25, 7, 26, 1, 63, 4, 50, 8, 16, 1, 53, 1, 19, 19, 122, 5, 33, 1, 29, 10, 39, 1, 113, 1, 21, 17, 35, 3, 43, 1, 95, 42, 22, 1, 83, 6, 24, 11, 59, 1, 88, 4, 44, 13, 27, 7, 203
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2014

Keywords

Crossrefs

Programs

Formula

a(1) = 0, a(n) = A078898(A003961(n)).
a(1) = 0, a(n) = A078898(n) + A249820(n).

A249825 Permutation of natural numbers: a(n) = A246277(A084968(n)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 4, 41, 43, 47, 53, 59, 61, 6, 67, 71, 73, 10, 79, 83, 89, 97, 101, 103, 14, 9, 107, 109, 22, 113, 127, 15, 131, 137, 139, 26, 149, 151, 25, 157, 163, 167, 21, 173, 179, 181, 191, 34, 33, 193, 38, 35, 197, 199, 211, 223, 227, 229, 55, 233, 39, 239, 46, 241, 251, 257, 263, 269, 271, 58, 49
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A246277(A084968(n)).
As a composition of other permutations:
a(n) = A249823(A250475(n)).
a(n) = A064216(A249745(A250475(n))). [Composition of the first three rows of array A251721.]

A249730 Odd nonprime terms in A250251.

Original entry on oeis.org

1, 9, 15, 25, 35, 49, 77, 121, 143, 147, 153, 169, 221, 289, 323, 361, 437, 529, 667, 841, 899, 961, 1147, 1369, 1517, 1681, 1763, 1849, 2021, 2209, 2491, 2809, 3127, 3481, 3599
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2014

Keywords

Comments

This sequence lists the numbers which together with all their multiples with the powers of 2 give the starting values for the prime recurrences whose union is A250251, the fixed points of permutations A250249 and A250250.
After 1, contains the terms from columns 2 and 3 of the Sieve of Eratosthenes: A083140 (A083221), but only from those rows r for which A055396(r) (the index of smallest dividing prime r) is fixed by A250249 and A250250, i.e., is in A250251. The first r for which this is not the case is 73, which is in A249729 instead. However, because there are infinitely many primes in A250251, and especially because 2 and 3 are among them, this sequence is infinite.

Crossrefs

Subsequence of A250251.

A349631 Dirichlet convolution of A003961 with A346479, which is Dirichlet inverse of A250469.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 6, 0, -6, 0, 12, 0, -6, 0, 18, 0, 24, 0, 24, 0, -24, 0, 0, 0, -24, 60, 36, 0, 48, 0, 42, -20, -42, 0, -12, 0, -42, -10, 12, 0, 72, 0, 60, 60, -48, 0, -24, 0, 42, -30, 72, 0, -84, 0, 12, -30, -78, 0, -120, 0, -72, 120, 126, 0, 180, 0, 96, -30, 132, 0, -48, 0, -96, 60, 108, 0, 174, 0, -84, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2021

Keywords

Comments

Note that for n = 2..36, a(n) = -A349632(n).
Dirichlet convolution of this sequence with A347376 is A003972.

Crossrefs

Cf. A003961, A250469, A346479, A349632 (Dirichlet inverse).
Cf. also A003972, A347376, A349381.
Cf. also arrays A083221, A246278, A249821, A249822 and permutations A250245, A250246.

Programs

  • PARI
    up_to = 20000;
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA250469(n)));
    A346479(n) = v346479[n];
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A349631(n) = sumdiv(n,d,A003961(d)*A346479(n/d));

Formula

a(n) = Sum_{d|n} A003961(d) * A346479(n/d).

A349632 Dirichlet convolution of A250469 with A346234, which is Dirichlet inverse of A003961.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, -6, 0, 6, 0, -12, 0, 6, 0, -18, 0, -24, 0, -24, 0, 24, 0, 0, 0, 24, -60, -36, 0, -48, 0, -42, 20, 42, 0, 12, 0, 42, 10, -12, 0, -72, 0, -60, -60, 48, 0, 24, 0, -42, 30, -72, 0, 84, 0, -12, 30, 78, 0, 120, 0, 72, -120, -90, 0, -180, 0, -96, 30, -132, 0, 48, 0, 96, -60, -108, 0, -174, 0, 12, -120
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2021

Keywords

Comments

Note that for n = 2..36, a(n) = -A349631(n).
Dirichlet convolution of this sequence with A003972 is A347376.

Crossrefs

Cf. A003961, A250469, A346234, A349631 (Dirichlet inverse).
Cf. also A003972, A347376, A349382.
Cf. also arrays A083221, A246278, A249821, A249822 and permutations A250245, A250246.

Programs

  • PARI
    up_to = 20000;
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
    A346234(n) = (moebius(n)*A003961(n));
    A349632(n) = sumdiv(n,d,A250469(n/d)*A346234(d));

Formula

a(n) = Sum_{d|n} A250469(d) * A346234(n/d).
Previous Showing 11-18 of 18 results.