cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A250245 Permutation of natural numbers: a(1) = 1, a(n) = A083221(A055396(n),a(A246277(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 39, 34, 35, 36, 37, 38, 63, 40, 41, 54, 43, 44, 33, 46, 47, 48, 49, 50, 75, 52, 53, 42, 65, 56, 99, 58, 59, 60, 61, 62, 57, 64, 95, 78, 67, 68, 111, 70, 71, 72, 73, 74, 51, 76, 77, 126, 79, 80, 45, 82
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2014

Keywords

Comments

The first 7-cycle occurs at: (33 39 63 57 99 81 45) which is mirrored by the cycle (66 78 126 114 198 162 90) with double-size terms.
The cycle which contains 55 as its smallest term, goes as: 55, 65, 95, 185, 425, 325, 205, 455, 395, 1055, 2945, 6035, 30845, ...
while to the other direction (A250246) it goes as: 55, 125, 245, 115, 625, 8575, 40375, ...
The cycle which contains 69 as its smallest term, goes as: 69, 111, 183, 351, 261, 273, 387, 489, 939, 1863, 909, 1161, 981, 1281, 4167, ...
while to the other direction (A250246) it goes as: 69, 135, 87, 105, 225, 207, 231, 195, 525, 1053, 3159, 24909, ...

Crossrefs

Inverse: A250246.
Other similar permutations: A250244, A250247, A250249, A243071, A252755.
Differs from the "vanilla version" A249817 for the first time at n=42, where a(42) = 54, while A249817(42) = 42.
Differs from A250246 for the first time at n = 33, where a(33) = 39, while A250246(33) = 45.
Differs from A250249 for the first time at n=73, where a(73) = 73, while A250249(73) = 103.

Formula

a(1) = 1, a(n) = A083221(A055396(n), a(A246277(n))).
a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A250469(a(A064989(2n+1))). - Antti Karttunen, Jan 18 2015
As a composition of related permutations:
a(n) = A252755(A243071(n)).
Other identities. For all n >= 1:
a(n) = a(2n)/2. [The even bisection halved gives the sequence back.]
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].

A253557 a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 2, 3, 1, 3, 1, 5, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 3, 3, 1, 3, 3, 4, 3, 2, 1, 4, 1, 2, 2, 6, 2, 4, 1, 3, 4, 3, 1, 5, 1, 2, 2, 3, 2, 3, 1, 5, 3, 2, 1, 5, 3, 2, 3, 4, 1, 5, 3, 3, 5, 2, 2, 6, 1, 3, 2, 4, 1, 4, 1, 4, 4, 2, 1, 4, 1, 4, 2, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), a(n) gives the number of even numbers encountered on the path (i.e., including both 2 and the starting n if it was even).
This is bigomega (A001222) analog for nonstandard factorization based on the sieve of Eratosthenes (A083221). See A302041 for an omega-analog. - Antti Karttunen, Mar 31 2018

Crossrefs

Essentially, one more than A253559.
Primes, A000040, gives the positions of ones.
Differs from A001222 for the first time at n=21, where a(21) = 3, while A001222(21) = 2.

Programs

Formula

a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).
a(n) = A253555(n) - A253556(n).
a(n) = A000120(A252754(n)). [Binary weight of A252754(n).]
Other identities.
For all n >= 0:
a(2^n) = n.
For all n >= 2:
a(n) = A080791(A252756(n)) + 1. [One more than the number of nonleading 0-bits in A252756(n).]
From Antti Karttunen, Apr 01 2018: (Start)
a(1) = 0; for n > 1, a(n) = 1 + a(A302042(n)).
a(n) = A001222(A250246(n)).
(End)

Extensions

Definition (formula) corrected by Antti Karttunen, Mar 31 2018

A302042 A032742 analog for a nonstandard factorization process based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 9, 11, 1, 12, 5, 13, 7, 14, 1, 15, 1, 16, 15, 17, 7, 18, 1, 19, 11, 20, 1, 21, 1, 22, 21, 23, 1, 24, 7, 25, 25, 26, 1, 27, 25, 28, 27, 29, 1, 30, 1, 31, 13, 32, 11, 33, 1, 34, 33, 35, 1, 36, 1, 37, 17, 38, 11, 39, 1, 40, 39, 41, 1, 42, 35, 43, 35, 44, 1, 45, 49, 46, 45, 47, 13, 48
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

Like [A020639(n), A032742(n)] also ordered pair [A020639(n), a(n)] is unique for each n. Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the smallest prime factor (A020639) of each term gives a multiset of primes in ascending order, unique for each natural number n >= 1. Permutation pair A250245/A250246 maps between this non-standard prime factorization of n and the ordinary prime factorization of n.

Examples

			For n = 66, A020639(66) [its smallest prime factor] is 2. Because A055396(66) = A000720(2) = 1, a(66) is just A078898(66) = 66/2 = 33.
For n = 33, A020639(33) = 3 and A055396(33) = 2, so a(33) = A250469(A078898(33)) = A250469(6) = 15. [15 is under 6 in array A083221].
For n = 15, A020639(15) = 3 and A055396(15) = 2, so a(15) = A250469(A078898(15)) = A250469(3) = 5. [5 is under 3 is array A083221].
For n = 5, A020639(5) = 5 and A055396(5) = 3, so a(5) = A250469(A250469(A078898(5))) = A250469(A250469(1)) = 1.
Collecting the primes given by A020639 we get a multiset of factors: [2, 3, 3, 5]. Note that 2*3*3*5 = 90 = A250246(66).
If we start from n = 66, iterating the map n -> A302044(n) [instead of n -> A302042(n)] and apply A020639 to each term obtained we get just a single instance of each prime: [2, 3, 5]. Then by applying A302045 to the same terms we get the corresponding exponents (multiplicities) of those primes: [1, 2, 1].
		

Crossrefs

Cf. also following analogs: A302041 (omega), A253557 (bigomega), A302043, A302044, A302045 (exponent of the least prime present), A302046 (prime signature filter), A302050 (Moebius mu), A302051 (tau), A302052 (char.fun of squares), A302039, A302055 (Arith. derivative).

Programs

  • PARI
    \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is fast enough:
    A302042(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = n/2; while(k>0, n = A250469(n); k--); (n));
    
  • PARI
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A078898(n) = if(n<=1,n, my(spf=A020639(n),k=1,m=n/spf); while(m>1,if(A020639(m)>=spf,k++); m--); (k));
    \\ Faster if we precompute A078898 as an ordinal transform of A020639:
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));

Formula

For n > 1, a(n) = A250469^(r)(A078898(n)), where r = A055396(n)-1 and A250469^(r)(n) stands for applying r times the map x -> A250469(x), starting from x = n.
a(n) = n - A302043(n).

A252754 Inverse of "Tree of Eratosthenes" permutation: a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A268674(2n+1)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 14, 33, 256, 23, 12, 65, 18, 35, 512, 21, 1024, 31, 22, 129, 20, 27, 2048, 257, 34, 39, 4096, 29, 8192, 67, 30, 513, 16384, 47, 24, 25, 26, 131, 32768, 37, 28, 71, 38, 1025, 65536, 43, 131072, 2049, 66, 63, 36, 45, 262144, 259, 46, 41, 524288, 55, 1048576, 4097, 130, 515, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Crossrefs

Inverse: A252753.
Fixed points of a(n)+1: A253789.
Similar permutations: A156552, A252756, A054429, A250246, A269388.
Differs from A156552 for the first time at n=21, where a(21) = 14, while A156552(21) = 18.

Programs

Formula

a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A268674(2n+1)).
As a composition of related permutations:
a(n) = A054429(A252756(n)).
a(n) = A156552(A250246(n)).
From Antti Karttunen, Mar 31 2018: (Start)
A000120(a(n)) = A253557(n).
A069010(a(n)) = A302041(n).
A132971(a(n)) = A302050(n).
A106737(a(n)) = A302051(n).
(End)

Extensions

Name edited and formula corrected by Antti Karttunen, Mar 31 2018

A252756 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A250470(2n+1)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 15, 4, 5, 14, 31, 12, 63, 30, 13, 8, 127, 10, 255, 28, 9, 62, 511, 24, 11, 126, 29, 60, 1023, 26, 2047, 16, 25, 254, 27, 20, 4095, 510, 61, 56, 8191, 18, 16383, 124, 17, 1022, 32767, 48, 23, 22, 21, 252, 65535, 58, 19, 120, 57, 2046, 131071, 52, 262143, 4094, 125, 32, 59, 50, 524287, 508, 49, 54, 1048575, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Crossrefs

Inverse: A252755.
Similar permutations: A243071, A252754, A054429, A250246.
Cf. also A250470, A253556 - A253559.
Differs from A243071 for the first time at n=21, where a(21) = 9, while A243071(21) = 29.

Formula

a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A250470(2n+1)).
As a composition of related permutations:
a(n) = A054429(A252754(n)).
a(n) = A243071(A250246(n)).

A302041 An omega analog for a nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Crossrefs

Cf. A302040 (positions of terms < 2).
Cf. A253557 (a similar analog for bigomega), A302050, A302051, A302052, A302039, A302055 (other analogs).
Differs from A302031 for the first time at n=59, where a(59) = 1, while A302031(59) = 2.

Programs

  • PARI
    \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is reasonably fast:
    A302044(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n));
    A302041(n) = if(1==n, 0,1+A302041(A302044(n)));
    
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A000265(n) = (n/2^valuation(n, 2));
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
    A302041(n) = if(1==n, 0,1+A302041(A302044(n)));
    
  • PARI
    \\ Or, using also some of the code from above:
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A302041(n) = omega(A250246(n));

Formula

a(1) = 0; for n > 1, a(n) = 1 + a(A302044(n)).
a(n) = A001221(A250246(n)).
a(n) = A069010(A252754(n)).

A302044 A028234 analog for factorization process based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 9, 1, 5, 1, 11, 1, 3, 1, 13, 7, 7, 1, 15, 1, 1, 5, 17, 7, 9, 1, 19, 11, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 25, 25, 13, 1, 27, 1, 7, 7, 29, 1, 15, 1, 31, 13, 1, 11, 33, 1, 17, 5, 35, 1, 9, 1, 37, 17, 19, 11, 39, 1, 5, 11, 41, 1, 21, 7, 43, 35, 11, 1, 45, 1, 23, 1, 47, 13, 3, 1, 49, 19, 25, 1, 51, 1, 13, 25
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the smallest prime factor (A020639) of each term gives a sequence of distinct primes in ascending order, while applying A302045 to the same terms gives the corresponding exponents (multiplicities) of those primes. Permutation pair A250245/A250246 maps between this non-standard prime factorization and the ordinary factorization of n. See also comments and examples in A302042.

Crossrefs

Programs

  • PARI
    \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is fast enough:
    A302044(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n));
    
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A000265(n) = (n/2^valuation(n, 2));
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };

Formula

For n > 1, a(n) = A250469^(r)(A000265(A078898(n))), where r = A055396(n)-1 and A250469^(r)(n) stands for applying r times the map x -> A250469(x), starting from x = n.
a(n) = A250245(A028234(A250246(n))).

A302051 An analog of A000005 for nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 6, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 5, 4, 2, 10, 3, 6, 6, 6, 2, 8, 4, 8, 6, 4, 2, 12, 2, 4, 4, 7, 4, 12, 2, 6, 8, 8, 2, 12, 2, 4, 4, 6, 4, 8, 2, 10, 6, 4, 2, 12, 6, 4, 8, 8, 2, 10, 4, 6, 6, 4, 4, 12, 2, 6, 4, 9, 2, 12, 2, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 01 2018

Keywords

Comments

See A302042, A302044 and A302045 for a description of the factorization process.

Crossrefs

Cf. A000005, A083221, A302042, A302044, A302045, A302052 (reduced modulo 2), A302053 (gives the positions of odd numbers).
Cf. also A253557, A302041, A302050, A302052, A302039, A302055 for other similar analogs.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A000265(n) = (n/2^valuation(n, 2));
    A001511(n) = 1+valuation(n,2);
    A302045(n) = A001511(A078898(n));
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
    A302051(n) = if(1==n,n,(A302045(n)+1)*A302051(A302044(n)));
    
  • PARI
    \\ Or, using also some of the code from above:
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A302051(n) = numdiv(A250246(n));

Formula

a(1) = 1, for n > 1, a(n) = (A302045(n)+1) * a(A302044(n)).
a(n) = A000005(A250246(n)).
a(n) = A106737(A252754(n)).

A260741 Permutation of natural numbers: a(1) = 1, for n > 1: a(n) = A255127(A260438(n), a(A260439(n))).

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 5, 8, 7, 18, 15, 12, 11, 10, 13, 16, 21, 14, 19, 36, 17, 30, 51, 24, 23, 22, 31, 20, 33, 26, 25, 32, 29, 42, 27, 28, 37, 38, 35, 72, 45, 34, 41, 60, 55, 102, 39, 48, 43, 46, 47, 44, 105, 62, 73, 40, 59, 66, 87, 52, 49, 50, 53, 64, 69, 58, 61, 84, 67, 54, 63, 56, 71, 74, 77, 76, 57, 70, 83, 144, 125, 90, 75, 68, 101, 82, 89, 120
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2015

Keywords

Comments

This is a more recursed variant of A260435.

Crossrefs

Inverse: A260742.
Similar permutations: A260435, A250245, A250246.

Formula

a(1) = 1, for n > 1: a(n) = A255127(A260438(n), a(A260439(n))).
Other identities. For all n >= 1:
a(A000959(n+1)) = A003309(n+2). [Maps Lucky numbers to odd Ludic numbers.]
a(n) = a(2n)/2. [The even bisection halved gives the sequence back.]

A260742 Permutation of natural numbers: a(1) = 1, for n > 1: a(n) = A255551(A260738(n), a(A260739(n))).

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 9, 8, 5, 14, 13, 12, 15, 18, 11, 16, 21, 10, 19, 28, 17, 26, 25, 24, 31, 30, 35, 36, 33, 22, 27, 32, 29, 42, 39, 20, 37, 38, 47, 56, 43, 34, 49, 52, 41, 50, 51, 48, 61, 62, 23, 60, 63, 70, 45, 72, 77, 66, 57, 44, 67, 54, 71, 64, 123, 58, 69, 84, 65, 78, 73, 40, 55, 74, 83, 76, 75, 94, 103, 112, 101, 86, 79, 68, 91, 98, 59, 104, 87, 82, 93, 100, 89, 102
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2015

Keywords

Comments

This is a more recursed variant of A260436.

Crossrefs

Inverse: A260741.
Similar permutations: A260436, A250245, A250246.

Formula

a(1) = 1, for n > 1: a(n) = A255551(A260738(n), a(A260739(n))).
Other identities. For all n >= 1:
a(A003309(n+2)) = A000959(n+1). [Maps odd Ludic numbers to Lucky numbers.]
a(n) = a(2n)/2. [The even bisection halved gives the sequence back.]
Previous Showing 11-20 of 39 results. Next