cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A326189 Number of distinct nonnegative integers that are reachable from n with some nonempty combination of transitions x -> A032742(x) and x -> A302042(x).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 4, 2, 1, 4, 2, 2, 4, 3, 1, 3, 1, 5, 4, 2, 2, 4, 1, 2, 3, 4, 1, 5, 1, 3, 7, 2, 1, 5, 2, 3, 4, 3, 1, 5, 4, 4, 6, 2, 1, 4, 1, 2, 6, 6, 3, 5, 1, 3, 6, 3, 1, 5, 1, 2, 4, 3, 2, 4, 1, 5, 8, 2, 1, 6, 4, 2, 4, 4, 1, 8, 4, 3, 9, 2, 3, 6, 1, 3, 6, 4, 1, 5, 1, 4, 7
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Comments

Number of distinct numbers > 1 in the directed acyclic graph formed by edge relations x -> A032742(x) and x -> A302042(x), where n is the unique root of the graph.

Examples

			The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. We exclude the root 153 from the count of numbers that are reached, thus a(153) = 6. (Equally, we can include 153, but exclude 1).
.
        153
       /  \
      /    \
     51    75
     / \  /  \
    /   17    \
    \    |    /
     \   1   /
      \     /
       \   /
        25
         |
         5
         |
         1
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326189aux(n,distvals) = if(1==n,distvals,my(newdistvals=setunion([n],distvals),a=A032742(n), b=A302042(n)); newdistvals = A326189aux(a,newdistvals); if(a==b,newdistvals, A326189aux(b,newdistvals)));
    A326189(n) = length(A326189aux(n,Set([])));

Formula

a(p) = 1 for all primes p.
a(n) >= A326191(n) >= max(A001222(n),A253557(n)) >= min(A001222(n),A253557(n)) >= A326190(n).

A323888 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A032742(n),A302042(n)] for all n > 1, with f(1) = 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 4, 6, 2, 7, 2, 8, 6, 9, 2, 10, 2, 11, 12, 13, 2, 14, 6, 15, 16, 17, 2, 18, 2, 19, 20, 21, 8, 22, 2, 23, 24, 25, 2, 26, 2, 27, 28, 29, 2, 30, 8, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 2, 40, 41, 42, 24, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 13, 51, 2, 52, 53, 54, 2, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 2, 67, 68, 69, 2, 70, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Comments

For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A001222(i) = A001222(j),
a(i) = a(j) => A253557(i) = A253557(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A323888aux(n) = if(1==n, 0, [A032742(n),A302042(n)]);
    v323888 = rgs_transform(vector(up_to, n, A323888aux(n)));
    A323888(n) = v323888[n];

A326139 a(n) = gcd(A032742(n), A302042(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 1, 11, 1, 12, 5, 13, 1, 14, 1, 15, 1, 16, 1, 17, 7, 18, 1, 19, 1, 20, 1, 21, 1, 22, 3, 23, 1, 24, 7, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 11, 39, 1, 40, 3, 41, 1, 42, 1, 43, 1, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 49, 1, 50, 1, 51, 1, 52, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326139(n) = gcd(A032742(n),A302042(n));

Formula

a(n) = gcd(A032742(n), A302042(n)).

A326190 Length of the shortest path to 1 when starting from x=n and on each iteration step one may always choose either transition x -> A032742(x) or x -> A302042(x).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 3, 2, 4, 2, 2, 1, 4, 1, 2, 2, 6, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 2, 3, 2, 3, 1, 5, 3, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 2, 4, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Examples

			The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. The length of shortest path(s) from 153 to 1 is 3 (there are actually two shortest paths: 153 -> 51 -> 17 -> 1 and 153 -> 75 -> 17 -> 1), thus a(153) = 3.
.
        153
       /  \
      /    \
     51    75
     / \  /  \
    /   17    \
    \    |    /
     \   1   /
      \     /
       \   /
        25
         |
         5
         |
         1
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326190(n) = if(1==n,0,1+min(A326190(A032742(n)), A326190(A302042(n))));
    \\ Somewhat faster version:
    memo302042 = Map();
    A302042(n) = if((1==n)||isprime(n),1,my(v); if(mapisdefined(memo302042, n, &v), v, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); v=(k*p); mapput(memo302042,n,v); (v)));
    A326190list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to, v[n] = 1+min(v[A032742(n)], v[A302042(n)])); (v); };
    v326190 = A326190list(up_to);
    A326190(n) = v326190[n];

Formula

a(1) = 0; for n > 1, a(n) = 1 + min(a(A032742(n)), a(A302042(n))).
a(n) <= min(A001222(n),A253557(n)) <= max(A001222(n),A253557(n)) <= A326191(n) <= A326189(n).

A326191 Length of the longest path to 1 when starting from x=n and on each iteration step one may always choose either transition x -> A032742(x) or x -> A302042(x).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 3, 3, 1, 4, 3, 4, 4, 2, 1, 4, 1, 2, 4, 6, 2, 4, 1, 3, 4, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 5, 3, 2, 3, 4, 1, 5, 3, 3, 5, 2, 2, 6, 1, 3, 4, 4, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2019

Keywords

Examples

			The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. The length of longest path(s) from 153 to 1 is 4 (there are actually two longest paths: 153 -> 51 -> 25 -> 5 -> 1 and 153 -> 75 -> 25 -> 5 -> 1), thus a(153) = 4.
.
        153
       /  \
      /    \
     51    75
     / \  /  \
    /   17    \
    \    |    /
     \   1   /
      \     /
       \   /
        25
         |
         5
         |
         1
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A032742(n) = (n/A020639(n));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A326191(n) = if(1==n,0,1+max(A326191(A032742(n)), A326191(A302042(n))));
    \\ Slightly faster:
    memo302042 = Map();
    A302042(n) = if((1==n)||isprime(n),1,my(v); if(mapisdefined(memo302042, n, &v), v, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); v=(k*p); mapput(memo302042,n,v); (v)));
    A326191list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to, v[n] = 1+max(v[A032742(n)], v[A302042(n)])); (v); };
    v326191 = A326191list(up_to);
    A326191(n) = v326191[n];

Formula

a(1) = 0; for n > 1, a(n) = 1 + max(a(A032742(n)), a(A302042(n))).
A326189(n) >= a(n) >= max(A001222(n), A253557(n)) >= min(A001222(n), A253557(n)) >= A326190(n).

A302043 a(n) = n - A302042(n); an analog of A060681 based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 6, 12, 7, 10, 8, 16, 9, 18, 10, 12, 11, 22, 12, 20, 13, 20, 14, 28, 15, 30, 16, 18, 17, 28, 18, 36, 19, 28, 20, 40, 21, 42, 22, 24, 23, 46, 24, 42, 25, 26, 26, 52, 27, 30, 28, 30, 29, 58, 30, 60, 31, 50, 32, 54, 33, 66, 34, 36, 35, 70, 36, 72, 37, 58, 38, 66, 39, 78, 40, 42, 41, 82, 42, 50, 43, 52, 44, 88, 45, 42
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

An analog of A060681 based on the sieve of Eratosthenes (A083221).

Crossrefs

Programs

Formula

a(n) = n - A302042(n).

A032742 a(1) = 1; for n > 1, a(n) = largest proper divisor of n (that is, for n>1, maximum divisor d of n in range 1 <= d < n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 15, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 35, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

It seems that a(n) = Max_{j=n+1..2n-1} gcd(n,j). - Labos Elemer, May 22 2002
This is correct: No integer in the range [n+1, 2n-1] has n as its divisor, but certainly at least one multiple of the largest proper divisor of n will occur there (e.g., if it is n/2, then at n + (n/2)). - Antti Karttunen, Dec 18 2014
The slopes of the visible lines made by the points in the scatter plot are 1/2, 1/3, 1/5, 1/7, ... (reciprocals of primes). - Moosa Nasir, Jun 19 2022

Crossrefs

Maximal GCD of k positive integers with sum n for k = 2..10: this sequence (k=2,n>=2), A355249 (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), A354599 (k=9), A354601 (k=10).

Programs

  • Haskell
    a032742 n = n `div` a020639 n  -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A032742 :=proc(n) option remember; if n = 1 then 1; else numtheory[divisors](n) minus {n} ; max(op(%)) ; end if; end proc: # R. J. Mathar, Jun 13 2011
    1, seq(n/min(numtheory:-factorset(n)), n=2..1000); # Robert Israel, Dec 18 2014
  • Mathematica
    f[n_] := If[n == 1, 1, Divisors[n][[-2]]]; Table[f[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)
    Join[{1},Divisors[#][[-2]]&/@Range[2,80]] (* Harvey P. Dale, Nov 29 2011 *)
    a[n_] := n/FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
    Table[Which[n==1,1,PrimeQ[n],1,True,Divisors[n][[-2]]],{n,80}] (* Harvey P. Dale, Feb 02 2022 *)
  • PARI
    a(n)=if(n==1,1,n/factor(n)[1,1]) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else n//min(factorint(n))
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 21 2022
  • Scheme
    (define (A032742 n) (/ n (A020639 n))) ;; Antti Karttunen, Dec 18 2014
    

Formula

a(n) = n / A020639(n).
Other identities and observations:
A054576(n) = a(a(n)); A117358(n) = a(a(a(n))) = a(A054576(n)); a(A008578(n)) = 1, a(A002808(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
a(n) = A130064(n) / A006530(n). - Reinhard Zumkeller, May 05 2007
a(m)*a(n) < a(m*n) for m and n > 1. - Reinhard Zumkeller, Apr 11 2008
a(m*n) = max(m*a(n), n*a(m)). - Robert Israel, Dec 18 2014
From Antti Karttunen, Mar 31 2018: (Start)
a(n) = n - A060681(n).
For n > 1, a(n) = A003961^(r)(A246277(n)), where r = A055396(n)-1 and A003961^(r)(n) stands for shifting the prime factorization of n by r positions towards larger primes.
For all n >= 1, A276085(a(A276086(n))) = A276151(n).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Sum_{k>=1} A005867(k-1)/(prime(k)*A002110(k)) = 0.165049... . - Amiram Eldar, Nov 19 2022

Extensions

Definition clarified by N. J. A. Sloane, Dec 26 2022

A250246 Permutation of natural numbers: a(1) = 1, a(n) = A246278(A055396(n), a(A078898(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 45, 34, 35, 36, 37, 38, 33, 40, 41, 54, 43, 44, 81, 46, 47, 48, 49, 50, 75, 52, 53, 42, 125, 56, 63, 58, 59, 60, 61, 62, 39, 64, 55, 90, 67, 68, 135, 70, 71, 72, 73, 74, 51, 76, 77, 66, 79, 80, 99, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2014

Keywords

Crossrefs

Inverse: A250245.
Other similar permutations: A250243, A250248, A250250, A163511, A252756.
Differs from the "vanilla version" A249818 for the first time at n=42, where a(42) = 54, while A249818(42) = 42.
Differs from A250250 for the first time at n=73, where a(73) = 73, while A250250(73) = 103.

Programs

  • PARI
    up_to = 16384;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k))); \\ Antti Karttunen, Apr 01 2018
    (Scheme, with memoizing-macro definec from Antti Karttunen's IntSeq-library, three alternative definitions)
    (definec (A250246 n) (cond ((<= n 1) n) (else (A246278bi (A055396 n) (A250246 (A078898 n)))))) ;; Code for A246278bi given in A246278
    (definec (A250246 n) (cond ((<= n 1) n) ((even? n) (* 2 (A250246 (/ n 2)))) (else (A003961 (A250246 (A250470 n))))))
    (define (A250246 n) (A163511 (A252756 n)))

Formula

a(1) = 1, a(n) = A246278(A055396(n), a(A078898(n))).
a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A003961(a(A250470(2n+1))). - Antti Karttunen, Jan 18 2015 - Instead of A250470, one may use A268674 in above formula. - Antti Karttunen, Apr 01 2018
As a composition of related permutations:
a(n) = A163511(A252756(n)).
Other identities. For all n >= 1:
a(n) = a(2n)/2. [The even bisection halved gives the sequence back.]
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].
A001221(a(n)) = A302041(n).
A001222(a(n)) = A253557(n).
A008683(a(n)) = A302050(n).
A000005(a(n)) = A302051(n)
A010052(a(n)) = A302052(n), for n >= 1.
A056239(a(n)) = A302039(n).

A253557 a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 2, 3, 1, 3, 1, 5, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 3, 3, 1, 3, 3, 4, 3, 2, 1, 4, 1, 2, 2, 6, 2, 4, 1, 3, 4, 3, 1, 5, 1, 2, 2, 3, 2, 3, 1, 5, 3, 2, 1, 5, 3, 2, 3, 4, 1, 5, 3, 3, 5, 2, 2, 6, 1, 3, 2, 4, 1, 4, 1, 4, 4, 2, 1, 4, 1, 4, 2, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), a(n) gives the number of even numbers encountered on the path (i.e., including both 2 and the starting n if it was even).
This is bigomega (A001222) analog for nonstandard factorization based on the sieve of Eratosthenes (A083221). See A302041 for an omega-analog. - Antti Karttunen, Mar 31 2018

Crossrefs

Essentially, one more than A253559.
Primes, A000040, gives the positions of ones.
Differs from A001222 for the first time at n=21, where a(21) = 3, while A001222(21) = 2.

Programs

Formula

a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).
a(n) = A253555(n) - A253556(n).
a(n) = A000120(A252754(n)). [Binary weight of A252754(n).]
Other identities.
For all n >= 0:
a(2^n) = n.
For all n >= 2:
a(n) = A080791(A252756(n)) + 1. [One more than the number of nonleading 0-bits in A252756(n).]
From Antti Karttunen, Apr 01 2018: (Start)
a(1) = 0; for n > 1, a(n) = 1 + a(A302042(n)).
a(n) = A001222(A250246(n)).
(End)

Extensions

Definition (formula) corrected by Antti Karttunen, Mar 31 2018

A302044 A028234 analog for factorization process based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 9, 1, 5, 1, 11, 1, 3, 1, 13, 7, 7, 1, 15, 1, 1, 5, 17, 7, 9, 1, 19, 11, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 25, 25, 13, 1, 27, 1, 7, 7, 29, 1, 15, 1, 31, 13, 1, 11, 33, 1, 17, 5, 35, 1, 9, 1, 37, 17, 19, 11, 39, 1, 5, 11, 41, 1, 21, 7, 43, 35, 11, 1, 45, 1, 23, 1, 47, 13, 3, 1, 49, 19, 25, 1, 51, 1, 13, 25
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the smallest prime factor (A020639) of each term gives a sequence of distinct primes in ascending order, while applying A302045 to the same terms gives the corresponding exponents (multiplicities) of those primes. Permutation pair A250245/A250246 maps between this non-standard prime factorization and the ordinary factorization of n. See also comments and examples in A302042.

Crossrefs

Programs

  • PARI
    \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is fast enough:
    A302044(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n));
    
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A000265(n) = (n/2^valuation(n, 2));
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };

Formula

For n > 1, a(n) = A250469^(r)(A000265(A078898(n))), where r = A055396(n)-1 and A250469^(r)(n) stands for applying r times the map x -> A250469(x), starting from x = n.
a(n) = A250245(A028234(A250246(n))).
Showing 1-10 of 19 results. Next