A294846
Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(k+1)/2).
Original entry on oeis.org
1, -1, -2, -4, 0, 3, 17, 24, 40, 9, -24, -149, -250, -435, -395, -281, 514, 1528, 3542, 5127, 6920, 5416, 1368, -11136, -28533, -57051, -82846, -107315, -95655, -43646, 107826, 345877, 727771, 1150968, 1601729, 1766547, 1495154, 183944, -2339567, -6770991, -12701854
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[1/(1 + x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]
A261567
Expansion of Product_{k>=1} (1/(1 + 3*x^k))^k.
Original entry on oeis.org
1, -3, 3, -18, 69, -168, 504, -1578, 4800, -14310, 42396, -128049, 385839, -1154271, 3458847, -10386477, 31173873, -93490386, 280426833, -841384614, 2524300014, -7572585150, 22717270491, -68152872885, 204460229394, -613377236379, 1840126774737, -5520391488054
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1/(1 + 3*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*3^k/k*x^k/(1-x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
A284897
Expansion of Product_{k>=1} 1/(1+x^k)^(k^3) in powers of x.
Original entry on oeis.org
1, -1, -7, -20, -8, 99, 455, 958, 715, -3606, -17450, -44157, -61852, 19546, 419786, 1442212, 3084950, 3756436, -2155907, -27112107, -88277693, -187777531, -251308697, -5153980, 1182558343, 4299818445, 9988792754, 16075200671, 12020651310, -29802956283
Offset: 0
-
CoefficientList[Series[Product[1/(1 + x^k)^(k^3) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
-
x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^3))) \\ Indranil Ghosh, Apr 05 2017
A284898
Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.
Original entry on oeis.org
1, -1, -15, -66, -54, 725, 4580, 12739, 3346, -149076, -791226, -2182124, -1656973, 16553206, 100646954, 318795473, 506196578, -818806580, -9148048880, -36415709566, -87180585636, -70923559814, 484810027389, 2992082912770, 9866919438716, 19936695359140
Offset: 0
-
CoefficientList[Series[Product[1/(1 + x^k)^(k^4) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
-
x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 05 2017
A284899
Expansion of Product_{k>=1} 1/(1+x^k)^(k^5) in powers of x.
Original entry on oeis.org
1, -1, -31, -212, -284, 4935, 43719, 160002, -96747, -4914512, -31358932, -94515285, 97642670, 2823746182, 16834776254, 51617810512, -11233909783, -1137004349695, -7267899354808, -25263858110877, -24537905293857, 319397811973578, 2523465326904492
Offset: 0
-
CoefficientList[Series[Product[1/(1 + x^k)^(k^5) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
-
x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^5))) \\ Indranil Ghosh, Apr 05 2017
A299212
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).
Original entry on oeis.org
1, 1, 0, -2, -5, -4, 4, 21, 35, 23, -47, -165, -239, -78, 479, 1273, 1508, -138, -4429, -9451, -8845, 6207, 37937, 67123, 45144, -83355, -308078, -455109, -166872, 873799, 2393041, 2916869, -73472, -8133572, -17828640, -17294146, 10383571, 70275162, 127401305, 90368779, -147825714
Offset: 0
Cf.
A067687,
A255528,
A299105,
A299106,
A299108,
A299162,
A299164,
A299166,
A299167,
A299208,
A299209,
A299210,
A299211.
-
nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
A303174
a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n-k+1).
Original entry on oeis.org
1, -1, 2, -5, 18, -60, 189, -601, 1967, -6544, 21872, -73247, 246080, -829924, 2808357, -9527485, 32389671, -110316862, 376372802, -1286063899, 4400499380, -15075608840, 51704898623, -177513230200, 610007283817, -2098029341745, 7221561430933, -24875274224531
Offset: 0
a(0) = 1;
a(1) = [x^1] 1/(1 + x) = -1;
a(2) = [x^2] 1/((1 + x)^2*(1 + x^2)) = 2;
a(3) = [x^3] 1/((1 + x)^3*(1 + x^2)^2*(1 + x^3)) = -5;
a(4) = [x^4] 1/((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4)) = 18;
a(5) = [x^5] 1/((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5)) = -60, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + x^k)^(n-k+1) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (-1), 1, -1, 1, -1, ...
n = 2: 1, -2, (2), -2, 3, -4, ...
n = 3: 1, -3, 4, (-5), 9, -14, ...
n = 4: 1, -4, 7, -10, (18), -30, ...
n = 5: 1, -5, 11, -18, 33, (-60), ...
-
Table[SeriesCoefficient[Product[1/(1 + x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 27}]
A261566
Expansion of Product_{k>=1} (1/(1 + 2*x^k))^k.
Original entry on oeis.org
1, -2, 0, -6, 16, -18, 48, -94, 208, -426, 752, -1646, 3360, -6578, 13056, -26358, 53456, -105890, 211392, -424366, 850544, -1699290, 3393136, -6795646, 13601184, -27188130, 54358000, -108752870, 217552976, -435033618, 869999584, -1740145118, 3480497584
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1/(1 + 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*2^k/k*x^k/(1-x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
A279932
Expansion of Product_{k>0} 1/(1 + x^k)^(k*5).
Original entry on oeis.org
1, -5, 5, 0, 30, -51, 5, -130, 220, -125, 649, -605, 870, -2695, 1565, -4852, 7915, -6360, 20625, -17880, 33551, -61015, 50865, -138510, 135485, -224725, 389025, -359610, 849525, -838970, 1417404, -2195205, 2275690, -4756040, 4657940, -8315123, 11174840, -13352315
Offset: 0
A298988
a(n) = [x^n] Product_{k>=1} 1/(1 + n*x^k)^k.
Original entry on oeis.org
1, -1, 0, -18, 208, -2400, 36504, -663754, 13808320, -324176418, 8487126400, -245122390601, 7741417124880, -265402847130421, 9816338228638872, -389618889514254225, 16518399076342421248, -745025763154442071130, 35619835529954597786208, -1799459812004380374518790, 95780758238408017088795600
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Comments