cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A255844 a(n) = 2*n^2 + 6.

Original entry on oeis.org

6, 8, 14, 24, 38, 56, 78, 104, 134, 168, 206, 248, 294, 344, 398, 456, 518, 584, 654, 728, 806, 888, 974, 1064, 1158, 1256, 1358, 1464, 1574, 1688, 1806, 1928, 2054, 2184, 2318, 2456, 2598, 2744, 2894, 3048, 3206, 3368, 3534, 3704, 3878, 4056, 4238, 4424, 4614
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=3 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. Also, it is noted that a(n)*n = (n + 1)^3 + (n - 1)^3.
Equivalently, numbers m such that 2*m-12 is a square.
For n = 0..16, 3*a(n)-1 is prime (see A087370); for n = 0..12, 3*a(n)-5 is prime (see A107303).

Crossrefs

Cf. A016825 (first differences), A087370, A107303, A114949, A117950.
Cf. A152811: nonnegative numbers of the form 2*m^2-6.
Subsequence of A000378.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+6: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 6, {n, 0, 50}]
  • PARI
    vector(50, n, n--; 2*n^2+6)
    
  • Sage
    [2*n^2+6 for n in (0..50)]
    

Formula

G.f.: 2*(3-5*x+4*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A117950(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(3)*Pi*coth(sqrt(3)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + (sqrt(3)*Pi)*cosech(sqrt(3)*Pi))/12. (End)
E.g.f.: 2*exp(x)*(3 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Corrected and extended by Bruno Berselli, Mar 11 2015

A294774 a(n) = 2*n^2 + 2*n + 5.

Original entry on oeis.org

5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0

Views

Author

Bruno Berselli, Nov 08 2017

Keywords

Comments

This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that:
2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841.

Crossrefs

1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216.
Second column of Mathar's array in A016813 (Comments section).
Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1).
Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9).

Programs

  • Maple
    seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
  • Mathematica
    Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3.
E.g.f.: (5 + 4*x + 2*x^2)*exp(x).
a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1).
n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0.
a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020

A255842 a(n) = 2*n^2 + 12.

Original entry on oeis.org

12, 14, 20, 30, 44, 62, 84, 110, 140, 174, 212, 254, 300, 350, 404, 462, 524, 590, 660, 734, 812, 894, 980, 1070, 1164, 1262, 1364, 1470, 1580, 1694, 1812, 1934, 2060, 2190, 2324, 2462, 2604, 2750, 2900, 3054, 3212, 3374, 3540, 3710, 3884, 4062, 4244, 4430
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=6 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. Also, it is noted that a(n)*n = (n + sqrt(2))^3 + (n - sqrt(2))^3.
Equivalently, numbers m such that 2*m - 24 is a square.
For n = 0..10, a(n) - 1 is prime (see A092968).

Crossrefs

Cf. A016825 (first differences), A092968, A114949.
Subsequence of A047238 and A047406.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+12: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 12, {n, 0, 50}]
  • PARI
    vector(50, n, n--; 2*n^2+12)
    
  • Sage
    [2*n^2+12 for n in (0..50)]
    

Formula

G.f.: 2*(6 - 11*x + 7*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A114949(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/24. (End)
E.g.f.: 2*exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 24 2025

Extensions

Edited by Bruno Berselli, Mar 11 2015

A255845 a(n) = 2*n^2 + 10.

Original entry on oeis.org

10, 12, 18, 28, 42, 60, 82, 108, 138, 172, 210, 252, 298, 348, 402, 460, 522, 588, 658, 732, 810, 892, 978, 1068, 1162, 1260, 1362, 1468, 1578, 1692, 1810, 1932, 2058, 2188, 2322, 2460, 2602, 2748, 2898, 3052, 3210, 3372, 3538, 3708, 3882, 4060, 4242, 4428
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=5 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 20 is a square.

Crossrefs

Cf. A016825 (first differences), A117951.
Subsequence of A047463.
Cf. similar sequences listed in A255843.

Programs

Formula

a(n) = 2*A117951(n).
From Vincenzo Librandi, Mar 08 2015: (Start)
G.f.: 2*(5 - 9*x + 6*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(5)*Pi*coth(sqrt(5)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(5)*Pi*cosech(sqrt(5)*Pi))/20. (End)
E.g.f.: 2*exp(x)*(5 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 13 2015

A255846 a(n) = 2*n^2 + 14.

Original entry on oeis.org

14, 16, 22, 32, 46, 64, 86, 112, 142, 176, 214, 256, 302, 352, 406, 464, 526, 592, 662, 736, 814, 896, 982, 1072, 1166, 1264, 1366, 1472, 1582, 1696, 1814, 1936, 2062, 2192, 2326, 2464, 2606, 2752, 2902, 3056, 3214, 3376, 3542, 3712, 3886, 4064, 4246, 4432
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=7 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 28 is a square.

Crossrefs

Cf. A117619.
Subsequence of A047235 and A047451.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+14: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 14, {n, 0, 50}]
  • PARI
    vector(50, n, n--; 2*n^2+14)
    
  • Sage
    [2*n^2+14 for n in (0..50)]
    

Formula

G.f.: 2*(7 - 13*x + 8*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A117619(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(7)*Pi*coth(sqrt(7)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(7)*Pi*cosech(sqrt(7)*Pi))/28. (End)
E.g.f.: 2*exp(x)*(7 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 13 2015

A255848 a(n) = 2*n^2 + 18.

Original entry on oeis.org

18, 20, 26, 36, 50, 68, 90, 116, 146, 180, 218, 260, 306, 356, 410, 468, 530, 596, 666, 740, 818, 900, 986, 1076, 1170, 1268, 1370, 1476, 1586, 1700, 1818, 1940, 2066, 2196, 2330, 2468, 2610, 2756, 2906, 3060, 3218, 3380, 3546, 3716, 3890, 4068, 4250, 4436
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

For n>3, the sequence gives the 6th diagonal of triangle in A055096.
Also, this is the case k=9 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. It is noted that a(n)*n = (n + sqrt(3))^3 + (n - sqrt(3))^3.
Equivalently, numbers m such that 2*m-36 is a square.

Crossrefs

Cf. A016825 (first differences), A055096, A189834.
Subsequence of A047463.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+18: n in [0..50]]; // Vincenzo Librandi, Mar 08 2015
    
  • Mathematica
    f[n_] := 2 n^2 + 18; Array[f, 50, 0] (* Robert G. Wilson v, Mar 08 2015 *)
    CoefficientList[Series[(18 - 34 x + 20 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 08 2015 *)
    LinearRecurrence[{3,-3,1},{18,20,26},50] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    vector(50, n, 2*n^2+18) \\ Derek Orr, Mar 09 2015
    
  • Sage
    [2*n^2+18 for n in (0..50)] # Bruno Berselli, Mar 11 2015

Formula

a(n) = 2*A189834(n).
From Vincenzo Librandi, Mar 08 2015: (Start)
G.f.: 2*(9 - 17*x + 10*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/36.
Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/36. (End)
E.g.f.: 2*exp(x)*(9 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 11 2015
Previous Showing 11-16 of 16 results.