cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-99 of 99 results.

A318816 Regular tetrangle where T(n,k,i) is the number of non-isomorphic multiset partitions of length i of multiset partitions of length k of multisets of size n.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 3, 4, 3, 5, 14, 14, 9, 20, 9, 5, 14, 9, 5, 7, 28, 28, 33, 80, 33, 16, 68, 52, 16, 7, 28, 33, 16, 7, 11, 69, 69, 104, 266, 104, 74, 356, 282, 74, 29, 199, 253, 118, 29, 11, 69, 104, 74, 29, 11, 15, 134, 134, 294, 800, 294, 263, 1427, 1164
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			Tetrangle begins:
  1   2     3        5             7
      2 2   4 4     14 14         28 28
            3 4 3    9 20  9      33 80 33
                     5 14  9  5   16 68 52 16
                                   7 28 33 16  7
Non-isomorphic representatives of the T(4,3,2) = 20 multiset partitions:
  {{{1}},{{1},{1,1}}}  {{{1,1}},{{1},{1}}}
  {{{1}},{{1},{1,2}}}  {{{1,1}},{{1},{2}}}
  {{{1}},{{1},{2,2}}}  {{{1,1}},{{2},{2}}}
  {{{1}},{{1},{2,3}}}  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,1}}}  {{{1,2}},{{1},{1}}}
  {{{1}},{{2},{1,2}}}  {{{1,2}},{{1},{2}}}
  {{{1}},{{2},{1,3}}}  {{{1,2}},{{1},{3}}}
  {{{1}},{{2},{3,4}}}  {{{1,2}},{{3},{4}}}
  {{{2}},{{1},{1,1}}}  {{{2,3}},{{1},{1}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
		

Crossrefs

A320634 Odd numbers whose multiset multisystem is a multiset partition spanning an initial interval of positive integers (odd = no empty sets).

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 61, 63, 65, 69, 75, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 143, 145, 147, 151, 159, 161, 165, 169, 171, 175, 183, 185, 189, 195, 207, 223, 225, 243, 245, 247, 251, 259, 265, 267, 273
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    3: {{1}}
    7: {{1,1}}
    9: {{1},{1}}
   13: {{1,2}}
   15: {{1},{2}}
   19: {{1,1,1}}
   21: {{1},{1,1}}
   27: {{1},{1},{1}}
   35: {{2},{1,1}}
   37: {{1,1,2}}
   39: {{1},{1,2}}
   45: {{1},{1},{2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   57: {{1},{1,1,1}}
   61: {{1,2,2}}
   63: {{1},{1},{1,1}}
   65: {{2},{1,2}}
   69: {{1},{2,2}}
   75: {{1},{2},{2}}
   81: {{1},{1},{1},{1}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
   95: {{2},{1,1,1}}
  105: {{1},{2},{1,1}}
  111: {{1},{1,1,2}}
  113: {{1,2,3}}
  117: {{1},{1},{1,2}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  135: {{1},{1},{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1,100,2],normQ[primeMS/@primeMS[#]]&]

A320635 MM-numbers of simple labeled connected graphs spanning an initial interval of positive integers.

Original entry on oeis.org

13, 377, 611, 1363, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 147533, 203087, 301129, 315433, 467711, 761917, 1183403, 1280669, 1293487, 1917929, 2075567, 2174159, 2220907, 2415439, 2640131
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
       13: {{1,2}}
      377: {{1,2},{1,3}}
      611: {{1,2},{2,3}}
     1363: {{1,3},{2,3}}
    16211: {{1,2},{1,3},{1,4}}
    17719: {{1,2},{1,3},{2,3}}
    26273: {{1,2},{1,4},{2,3}}
    27521: {{1,2},{1,3},{2,4}}
    44603: {{1,2},{2,3},{2,4}}
    56173: {{1,2},{1,3},{3,4}}
    58609: {{1,3},{1,4},{2,3}}
    83291: {{1,2},{1,4},{3,4}}
    91031: {{1,3},{1,4},{2,4}}
    91039: {{1,2},{2,3},{3,4}}
    99499: {{1,3},{2,3},{2,4}}
   141401: {{1,2},{2,4},{3,4}}
   147533: {{1,4},{2,3},{2,4}}
   203087: {{1,3},{2,3},{3,4}}
   301129: {{1,4},{2,3},{3,4}}
   315433: {{1,3},{2,4},{3,4}}
   467711: {{1,4},{2,4},{3,4}}
   761917: {{1,2},{1,3},{1,4},{2,3}}
  1183403: {{1,2},{1,3},{1,4},{2,4}}
  1280669: {{1,2},{1,3},{1,4},{1,5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#]),Length[zsm[primeMS[#]]]==1]&]

A321744 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in h(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 6, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 7, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of type-v multiset partitions of a multiset whose multiplicities are the parts of u.
Also the coefficient of f(v) in e(u), where e is elementary symmetric functions and f is forgotten symmetric functions.

Examples

			Triangle begins:
   1
   1
   1   1
   1   2
   1   1   1
   1   2   3
   1   1   1   1   1
   1   3   6
   1   3   2   4   6
   1   2   2   3   4
   1   1   1   1   1   1   1
   1   4   3   7  12
   1   1   1   1   1   1   1   1   1   1   1
   1   2   2   3   3   4   5
   1   2   3   5   4   7  10
   1   6   4  12  24
   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
   1   3   5  11   8  18  30
For example, row 12 gives: h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],Sort[Length/@#]==primeMS[k]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]

A383310 Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 9, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 19, 3, 3, 3, 24, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 46, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 37, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 46, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2025

Keywords

Examples

			The a(36) = 24 choices:
  {{2,2,3,3}}  {{2},{2,3,3}}  {{2},{3},{2,3}}
  {{2,2,9}}    {{3},{2,2,3}}  {{2},{3},{6}}
  {{2,3,6}}    {{2,2},{3,3}}
  {{2,18}}     {{2},{2,9}}
  {{3,3,4}}    {{9},{2,2}}
  {{3,12}}     {{2},{3,6}}
  {{4,9}}      {{3},{2,6}}
  {{6,6}}      {{6},{2,3}}
  {{36}}       {{2},{18}}
               {{3},{3,4}}
               {{4},{3,3}}
               {{3},{12}}
               {{4},{9}}
		

Crossrefs

The case of a unique choice (positions of 1) is A008578.
This is the strict case of A050336.
For distinct strict blocks we have A050345.
For integer partitions we have A261049, strict case of A001970.
For strict blocks that are not necessarily distinct we have A296119.
Twice-partitions of this type are counted by A296122.
For normal multisets we have A317776, strict case of A255906.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A281113 counts twice-factorizations, strict A296121, see A296118, A296120.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y],UnsameQ@@#&]],{y,facs[n]}],{n,30}]

A317659 Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
    1
    1    0
    1    1    0
    1    3    1    0
    1    6    5    1    0
    1   10   17    7    1    0
    1   15   43   33    9    1    0
    1   21   92  118   55   11    1    0
    1   28  174  341  252   82   13    1    0
    1   36  302  845  935  463  115   15    1    0
    1   45  490 1864 2921 2103  769  153   17    1    0
    1   55  755 3755 7981 8012 4145 1187  197   19    1    0
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    Table[Length[Select[maxUsing[n],Length[Position[#,"o"]]==k&]],{n,12},{k,n}]

A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 3, 3, 6, 5, 10, 16, 12, 7, 27, 11, 20, 32, 47, 15, 76, 22, 56, 65, 35, 30, 136, 79, 54, 263, 114, 42, 191, 56, 246, 113, 86, 160, 476, 77, 128, 199, 344
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of multiset partitions of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.

Examples

			The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27.
The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions:
  {11}    {12}    {111}      {112}      {1111}        {123}      {1122}
  {1}{1}  {1}{2}  {1}{11}    {1}{12}    {1}{111}      {1}{23}    {1}{122}
          {2}{1}  {1}{1}{1}  {2}{11}    {11}{11}      {2}{13}    {11}{22}
                             {1}{1}{2}  {1}{1}{11}    {3}{12}    {12}{12}
                             {1}{2}{1}  {1}{1}{1}{1}  {1}{2}{3}  {2}{112}
                             {2}{1}{1}                {1}{3}{2}  {22}{11}
                                                      {2}{1}{3}  {1}{1}{22}
                                                      {2}{3}{1}  {1}{2}{12}
                                                      {3}{1}{2}  {2}{1}{12}
                                                      {3}{2}{1}  {2}{2}{11}
                                                                 {1}{1}{2}{2}
                                                                 {1}{2}{1}{2}
                                                                 {1}{2}{2}{1}
                                                                 {2}{1}{1}{2}
                                                                 {2}{1}{2}{1}
                                                                 {2}{2}{1}{1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}]

A326277 Number of crossing normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 0, 1, 22, 314, 3711, 39947
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y.

Examples

			The a(5) = 22 crossing normal multiset partitions:
  {{1,3},{1,2,4}}  {{1},{1,3},{2,4}}
  {{1,3},{2,2,4}}  {{1},{2,4},{3,5}}
  {{1,3},{2,3,4}}  {{2},{1,3},{2,4}}
  {{1,3},{2,4,4}}  {{2},{1,4},{3,5}}
  {{1,3},{2,4,5}}  {{3},{1,3},{2,4}}
  {{1,4},{2,3,5}}  {{3},{1,4},{2,5}}
  {{2,4},{1,1,3}}  {{4},{1,3},{2,4}}
  {{2,4},{1,2,3}}  {{4},{1,3},{2,5}}
  {{2,4},{1,3,3}}  {{5},{1,3},{2,4}}
  {{2,4},{1,3,4}}
  {{2,4},{1,3,5}}
  {{2,5},{1,3,4}}
  {{3,5},{1,2,4}}
		

Crossrefs

Crossing simple graphs are A326210.
Normal multiset partitions are A255906.
Non-crossing normal multiset partitions are A324171.
MM-numbers of crossing multiset partitions are A324170.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A322076 Number of set multipartitions (multisets of sets) with no singletons, of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 1, 0, 11, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 13, 1, 1, 0, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 0, 1, 41, 0, 0, 0, 0, 0, 1, 0, 20, 0, 0, 2, 0, 0, 0, 0, 6, 16, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(90) = 7 set multipartitions of {1,1,1,2,2,3,3,4} with no singletons:
  {{1,2},{1,2},{1,3},{3,4}}
  {{1,2},{1,3},{1,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{1,2,3,4}}
  {{1,2},{1,2,3},{1,3,4}}
  {{1,3},{1,2,3},{1,2,4}}
  {{1,4},{1,2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sqnopfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqnopfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],!PrimeQ[#]&&SquareFreeQ[#]&]}]];
    Table[Length[sqnopfacs[Times@@Prime/@nrmptn[n]]],{n,30}]
Previous Showing 91-99 of 99 results.