cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A256849 Decimal expansion of the generalized Euler constant gamma(4,5) (negated).

Original entry on oeis.org

1, 2, 8, 8, 8, 5, 8, 6, 9, 1, 4, 5, 5, 9, 2, 3, 8, 3, 0, 4, 1, 8, 9, 2, 3, 4, 0, 0, 1, 3, 8, 7, 0, 4, 4, 3, 9, 7, 8, 2, 8, 8, 1, 7, 2, 9, 1, 4, 6, 5, 8, 9, 7, 8, 5, 6, 0, 5, 6, 7, 4, 1, 9, 4, 4, 5, 8, 4, 3, 5, 5, 6, 0, 6, 4, 3, 9, 4, 7, 5, 2, 0, 6, 4, 7, 5, 1, 4, 4, 3, 7, 7, 0, 6, 5, 1, 5, 1, 1, 7, 3, 3, 4, 7, 3, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.12888586914559238304189234001387044397828817291465897856 ...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 - Pi(R)/(10*Sqrt(2*(5-Sqrt(5)))) - Pi(R)/(2*Sqrt(10*(5-Sqrt(5)))) + Log(5)/20 - Log(5-Sqrt(5))/(4*Sqrt(5)) + Log(5+Sqrt(5))/( 4*Sqrt(5)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-Log[5]/5 - PolyGamma[4/5]/5, 10, 107] // First
  • PARI
    default(realprecision, 100); Euler/5 - Pi/(10*sqrt(2*(5-sqrt(5)))) - Pi/(2*sqrt(10*(5-sqrt(5)))) + log(5)/20 - log(5-sqrt(5))/(4*sqrt(5)) + log(5+sqrt(5))/(4*sqrt(5)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals -log(5)/5 - PolyGamma(4/5)/5.
Equals EulerGamma/5 - Pi/(10*sqrt(2*(5-sqrt(5)))) - Pi/(2*sqrt(10*(5-sqrt(5)))) + log(5)/20 - log(5-sqrt(5))/(4*sqrt(5)) + log(5+sqrt(5))/(4*sqrt(5)).

A256783 Decimal expansion of the generalized Euler constant gamma(1,12).

Original entry on oeis.org

8, 3, 0, 2, 4, 9, 8, 8, 9, 8, 8, 6, 6, 2, 4, 3, 3, 9, 3, 8, 9, 0, 3, 4, 1, 9, 7, 0, 3, 2, 1, 4, 9, 6, 5, 0, 5, 5, 5, 7, 9, 6, 3, 9, 2, 7, 9, 7, 2, 7, 4, 9, 6, 2, 0, 1, 5, 4, 3, 9, 8, 6, 8, 1, 1, 3, 9, 3, 1, 2, 5, 3, 4, 4, 1, 4, 2, 7, 9, 9, 6, 1, 0, 1, 6, 0, 1, 3, 0, 5, 8, 1, 2, 5, 5, 8, 4, 0, 3, 5, 7, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.83024988988662433938903419703214965055579639279727496201543...
		

Crossrefs

Cf. A001620 (EulerGamma), A016635, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/12 + (1/24)*(Pi(R)*(2+Sqrt(3)) - 2*(Sqrt(3)-1)*Log(2) + Log(3) + 4*Sqrt(3)*Log(Sqrt(3)+1)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-Log[12]/12 - PolyGamma[1/12]/12, 10, 103] // First
  • PARI
    default(realprecision, 100); Euler/12 + 1/24*(Pi*(2+sqrt(3)) - 2*(sqrt(3)-1)*log(2) + log(3) + 4*sqrt(3)*log(sqrt(3)+1)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/12 + 1/24*(Pi*(2+sqrt(3)) - 2*(sqrt(3)-1)*log(2) + log(3) + 4*sqrt(3) * log(sqrt(3)+1)).
Equals Sum_{n>=0} (1/(12n+1) - 1/12*log((12n+13)/(12n+1))).
Equals -(psi(1/12) + log(12))/12. - Amiram Eldar, Jan 07 2024

A256844 Decimal expansion of the generalized Euler constant gamma(3,3) (negated).

Original entry on oeis.org

1, 7, 3, 7, 9, 8, 8, 7, 4, 5, 8, 8, 8, 5, 8, 9, 4, 3, 5, 9, 6, 2, 4, 4, 3, 8, 2, 2, 8, 0, 0, 4, 1, 0, 9, 1, 2, 0, 1, 7, 7, 7, 0, 7, 3, 9, 6, 0, 9, 4, 1, 9, 5, 0, 9, 7, 6, 3, 0, 9, 0, 3, 2, 9, 1, 7, 5, 4, 2, 1, 8, 8, 8, 1, 3, 6, 4, 8, 0, 9, 8, 6, 4, 5, 5, 5, 6, 2, 3, 0, 5, 0, 7, 3, 2, 8, 4, 4, 6, 4, 2, 4, 4, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.1737988745888589435962443822800410912017770739609419509763...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Log(3)/3; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/3 - Log[3]/3, 10, 105] // First
  • PARI
    default(realprecision, 100); Euler/3 - log(3)/3 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - log(3)/3.

A256847 Decimal expansion of the generalized Euler constant gamma(4,4) (negated).

Original entry on oeis.org

2, 0, 2, 2, 6, 9, 6, 7, 4, 0, 5, 4, 5, 8, 9, 4, 3, 9, 5, 5, 6, 9, 8, 8, 0, 3, 8, 2, 0, 8, 4, 8, 7, 6, 7, 6, 2, 7, 7, 2, 1, 0, 2, 3, 3, 1, 9, 5, 1, 4, 6, 7, 2, 7, 3, 5, 8, 8, 9, 8, 1, 9, 6, 0, 2, 5, 4, 7, 9, 8, 7, 9, 2, 9, 0, 4, 3, 1, 1, 9, 0, 0, 6, 8, 6, 9, 4, 8, 9, 7, 6, 7, 5, 2, 7, 2, 6, 5, 6, 3, 9, 2, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.202269674054589439556988038208487676277210233195146727358898...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(4))/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/4 - Log[4]/4, 10, 104] // First
  • PARI
    default(realprecision, 100); (Euler - log(4))/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(4))/4.

A256850 Decimal expansion of the generalized Euler constant gamma(5,5) (negated).

Original entry on oeis.org

2, 0, 6, 4, 4, 4, 4, 4, 9, 5, 0, 6, 5, 1, 3, 5, 0, 2, 7, 9, 8, 8, 4, 9, 4, 4, 8, 6, 2, 8, 7, 5, 7, 0, 4, 1, 6, 9, 6, 6, 8, 8, 4, 0, 3, 6, 6, 5, 7, 1, 8, 8, 2, 4, 6, 2, 1, 3, 7, 6, 1, 3, 1, 3, 1, 7, 8, 6, 2, 2, 5, 2, 1, 8, 5, 9, 9, 8, 6, 1, 8, 7, 3, 8, 6, 3, 7, 3, 6, 2, 9, 6, 0, 2, 8, 6, 5, 7, 2, 2, 5, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.20644444950651350279884944862875704169668840366571882462...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(5))/5; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/5 - Log[5]/5, 10, 102] // First
  • PARI
    default(realprecision, 100); (Euler - log(5))/5 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(5))/5.

A293451 Number of proper divisors of n of the form 4k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A293451(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091954(n) - A293513(n).
a(n) = A001826(n) - A121262(n-1).
G.f.: Sum_{k>=1} x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,4) - (2 - gamma)/4 = A256778 - (2 - A001620)/4 = 0.354593... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Previous Showing 11-16 of 16 results.