cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A257615 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 5.

Original entry on oeis.org

1, 5, 5, 25, 70, 25, 125, 715, 715, 125, 625, 6380, 12870, 6380, 625, 3125, 52785, 186010, 186010, 52785, 3125, 15625, 416370, 2360295, 4092220, 2360295, 416370, 15625, 78125, 3180215, 27488205, 75698255, 75698255, 27488205, 3180215, 78125
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Triangle begins as:
      1;
      5,       5;
     25,      70,       25;
    125,     715,      715,      125;
    625,    6380,    12870,     6380,      625;
   3125,   52785,   186010,   186010,    52785,     3125;
  15625,  416370,  2360295,  4092220,  2360295,   416370,   15625;
  78125, 3180215, 27488205, 75698255, 75698255, 27488205, 3180215, 78125;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,2,5], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
  • Sage
    def T(n,k,a,b): # A257610
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,2,5) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 5.
Sum_{k=0..n} T(n, k) = A051582(n).
From G. C. Greubel, Mar 21 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 2, and b = 5.
T(n, n-k) = T(n, k).
T(n, 0) = A000351(n).
T(n, 1) = 5*7^n - 5^n*(n+5). (End)

A154693 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1).

Original entry on oeis.org

2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 17 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A008292(n+1, k+1). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A008292(n,k).
(p, q) = (2, 2) : 2*A257609(n,k).
(p, q) = (3, 2) : A154694(n,k).
(p, q) = (3, 3) : 2*A257620(n,k). (End)

Examples

			The triangle begins as:
    2;
    3,     3;
    5,    16,      5;
    9,    66,     66,       9;
   17,   260,    528,     260,      17;
   33,  1026,   3624,    3624,    1026,      33;
   65,  4080,  23820,   38656,   23820,    4080,     65;
  129, 16302, 154548,  374856,  374856,  154548,  16302,   129;
  257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260,  257;
		

Crossrefs

Cf. A000629 (row sums), A008292, A154694, A257609, A257620.

Programs

  • Magma
    A154693:= func< n,k | (2^(n-k) + 2^k)*EulerianNumber(n+1, k) >;
    [A154693(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    p=2; q=1;
    A008292[n_,k_]:= A008292[n,k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
    T[n_, m_]:= (p^(n-m)*q^m + p^m*q^(n-m))*A008292[n+1,m+1];
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
  • SageMath
    from sage.combinat.combinat import eulerian_number
    def A154693(n,k): return (2^(n-k) +2^k)*eulerian_number(n+1,k)
    print(flatten([[A154693(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1)
Sum_{k=0..n} T(n, k) = A000629(n+1).

Extensions

Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.

A296229 Triangle read by rows: Eulerian triangle that produces sums of even powers.

Original entry on oeis.org

2, 4, 4, 8, 32, 8, 16, 176, 176, 16, 32, 832, 2112, 832, 32, 64, 3648, 19328, 19328, 3648, 64, 128, 15360, 152448, 309248, 152448, 15360, 128, 256, 63232, 1099008, 3998464, 3998464, 1099008, 63232, 256, 512, 257024, 7479296, 45175808, 79969280, 45175808, 7479296, 257024, 512, 1024, 1037312, 48988160
Offset: 1

Views

Author

Tony Foster III, Feb 14 2018

Keywords

Comments

Finite sums of consecutive even powers are derived from T(n,k) rows and binomial coefficients: Sum_{k=1..n} (2k)^m = Sum_{j=1..m} binomial(n+m+1-j,m+1)*T(m,j).

Examples

			The triangle T(n, k) begins:
n\k |   1     2       3       4       5       6     7   8
----+----------------------------------------------------
  1 |   2
  2 |   4     4
  3 |   8    32       8
  4 |  16   176     176      16
  5 |  32   832    2112     832      32
  6 |  64  3648   19328   19328    3648      64
  7 | 128 15360  152448  309248  152448   15360   128
  8 | 256 63232 1099008 3998464 3998464 1099008 63232 256
...
		

Crossrefs

Row sums: A000165, A000079, A257609.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(k-i)*Binomial[n+1, k-i]*(2*i)^(n), {i, 1, k}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten

Formula

T(n,k) = Sum_{i = 1..k} (-1)^(k-i)*binomial(n+1,k-i)*(2*i)^n.
a(n) = 2*A257609(n-1). - Robert G. Wilson v, Feb 19 2018
Previous Showing 11-13 of 13 results.