cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A266273 Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).

Original entry on oeis.org

1, 3, 7, 4, 2, 7, 6, 8, 2, 5, 0, 2, 1, 4, 0, 5, 4, 4, 3, 5, 2, 2, 0, 5, 6, 4, 1, 9, 0, 5, 1, 8, 5, 5, 1, 0, 7, 3, 0, 9, 5, 3, 7, 2, 1, 5, 7, 7, 0, 4, 9, 8, 5, 6, 0, 4, 7, 4, 5, 6, 5, 1, 5, 3, 4, 8, 8, 8, 9, 4, 6, 3, 3, 7, 8, 8, 5, 8, 5, 3, 8, 8, 2, 3, 4, 0, 6, 0, 9, 9, 0, 0, 3, 2, 3
Offset: 2

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-13.74276825021405443522056419051855107309537215770498560....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-18], 100]]

Formula

zeta'(-18) = -(97692469875*zeta(19))/(8*Pi^18) = - log(A(18)).
Equals -(43867/3192)*(zeta(19)/zeta(18)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266274 Decimal expansion of zeta'(-19) (the derivative of Riemann's zeta function at -19) (negated).

Original entry on oeis.org

2, 9, 9, 6, 5, 5, 2, 9, 8, 3, 1, 3, 9, 2, 3, 5, 1, 9, 3, 9, 4, 3, 1, 8, 6, 5, 2, 9, 7, 2, 7, 4, 2, 0, 1, 7, 9, 1, 9, 0, 8, 2, 2, 6, 1, 0, 9, 1, 1, 5, 5, 6, 5, 9, 1, 5, 8, 8, 1, 8, 7, 1, 6, 6, 8, 2, 0, 5, 7, 6, 1, 6, 0, 2, 8, 6, 7, 6, 7, 7, 6, 1, 1, 7, 2, 6, 8, 7, 3, 6, 3, 0, 3, 4
Offset: 2

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			-29.965529831392351939431865297274201791908226109115565915881....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-19], 100]]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-19) = -48069674759189/512143632000 - log(A(19)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266275 Decimal expansion of zeta'(-20) (the derivative of Riemann's zeta function at -20).

Original entry on oeis.org

1, 3, 2, 2, 8, 0, 9, 9, 7, 5, 0, 4, 2, 1, 2, 5, 1, 4, 5, 2, 7, 0, 9, 8, 2, 1, 1, 5, 8, 5, 7, 8, 5, 5, 1, 8, 6, 8, 0, 6, 4, 8, 0, 0, 9, 9, 9, 9, 5, 5, 0, 3, 1, 4, 5, 8, 8, 4, 7, 4, 5, 0, 1, 9, 2, 4, 1, 4, 2, 9, 1, 5, 7, 1, 9, 9, 4, 0, 4, 2, 9, 3, 8, 7, 7, 8, 3, 9, 4, 6, 4
Offset: 3

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			132.28099750421251452709821158578551868064800999955031458847450192414...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-20], 100]]

Formula

zeta'(-20) = (9280784638125*zeta(21))/(8*Pi^20) = - log(A(20)).
Equals (174611/1320)*(zeta(21)/zeta(20)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A261506 Decimal expansion of -zeta'(4).

Original entry on oeis.org

0, 6, 8, 9, 1, 1, 2, 6, 5, 8, 9, 6, 1, 2, 5, 3, 7, 9, 8, 4, 8, 8, 2, 9, 3, 6, 5, 5, 8, 7, 4, 4, 0, 8, 2, 7, 1, 5, 0, 0, 1, 6, 3, 7, 4, 8, 7, 1, 3, 7, 8, 4, 6, 3, 8, 2, 7, 5, 8, 5, 7, 0, 6, 0, 1, 8, 4, 2, 8, 4, 9, 8, 5, 2, 7, 6, 2, 1, 2, 0, 1, 3, 3, 4, 7, 8, 0, 4, 1, 0, 3, 8, 9, 8, 4, 7, 6, 0, 2, 2, 9, 0, 1, 8, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			0.06891126589612537984882936558744082715001637487137...
		

Crossrefs

Cf. A075700 (0), A073002 (2), A244115 (3).
Cf. A084448 (-1), A240966 (-2), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8).

Programs

  • Mathematica
    Flatten[{0, RealDigits[-Zeta'[4], 10, 105][[1]]}]

Formula

Sum_{n>=1} log(n) / n^4.

A260404 6th level factorials: product of first n 5th level factorials.

Original entry on oeis.org

1, 1, 2, 192, 6115295232, 15436756676507918107049554083840, 18356962141505758798331790171539976807981714702571497465907439808868887035904000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 24 2015

Keywords

Comments

In general for k-th level factorials a(n) = Product_{j=1..n} j^C(n-j+k-1,k-1).

Crossrefs

Programs

  • Mathematica
    Table[Product[i^Binomial[n-i+5,5],{i,1,n}],{n,0,10}]

Formula

a(n) ~ exp(137/720 - 11*n/16 - 737*n^2/480 - 53*n^3/48 - 421*n^4/1152 - 137*n^5/2400 - 49*n^6/14400 + (3 + n)*(15 + 12*n + 2*n^2)*Zeta(3)/(96*Pi^2) - (3 + n)*Zeta(5) / (32*Pi^4) + (17 + 12*n + 2*n^2)*Zeta'(-3)/24 + Zeta'(-5)/120) * n^(19087/60480 + n + 137*n^2/120 + 5*n^3/8 + 17*n^4/96 + n^5/40 + n^6/720) * (2*Pi)^((n+1)*(n+2)*(n+3)*(n+4)*(n+5)/240) / A^(137/60 + 15*n/4 + 17*n^2/8 + n^3/2 + n^4/24), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-3) = A259068, Zeta'(-5) = A259070 and A = A074962 is the Glaisher-Kinkelin constant.

A255439 Decimal expansion of a constant related to A255360.

Original entry on oeis.org

1, 1, 3, 5, 4, 9, 5, 4, 7, 4, 9, 7, 2, 9, 7, 8, 2, 3, 1, 2, 1, 0, 6, 6, 3, 0, 5, 9, 2, 4, 5, 0, 2, 1, 5, 7, 8, 1, 0, 1, 4, 0, 4, 6, 1, 3, 7, 1, 2, 0, 0, 7, 9, 8, 3, 2, 9, 2, 8, 0, 2, 3, 9, 6, 0, 7, 8, 8, 1, 8, 8, 2, 6, 2, 8, 0, 7, 9, 9, 1, 2, 5, 1, 5, 9, 3, 6
Offset: 2

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			11.354954749729782312106630592450215781014...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^5)!) / (n^(80/63 + 5*n/2 - 5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36)).
Equals 2^(5/4)*Pi^(5/4)*exp(137/3024 - 5*Zeta'(-5)) * Product_{n>=1} ((n^5)! / stirling(n^5)), where stirling(n^5) = sqrt(2*Pi) * n^(5*n^5 + 5/2) / exp(n^5) is the Stirling approximation of (n^5)! and Zeta'(-5) = A259070. - Vaclav Kotesovec, Apr 20 2016

A271172 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(5).

Original entry on oeis.org

0, 0, 9, 6, 3, 3, 8, 3, 2, 5, 4, 1, 0, 4, 5, 1, 9, 6, 0, 5, 1, 5, 5, 1, 8, 4, 0, 7, 0, 9, 6, 8, 0, 4, 3, 5, 3, 5, 9, 8, 1, 4, 8, 3, 3, 8, 5, 2, 0, 4, 6, 0, 8, 2, 0, 6, 4, 3, 8, 1, 6, 3, 8, 4, 4, 1, 8, 4, 4, 2, 9, 5, 8, 7, 7, 9, 1, 1, 6, 7, 7, 8, 1, 8, 7, 1, 1, 9, 6, 0, 1, 8, 8, 9, 4, 6
Offset: 0

Views

Author

G. C. Greubel, Apr 01 2016

Keywords

Comments

The logarithm of the fifth Bendersky constant.

Examples

			0.009633832541045196051551840709680435359814...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[(BernoulliB[6]/6)*(EulerGamma + Log[2*Pi] - Zeta'[6]/Zeta[6]), 10, 100] // First]

Formula

log(A(5)) = (1/6)*HarmonicNumber(5)*Bernoulli(6) - RiemannZeta'(-5).
log(A(5)) = (BernoulliB(6)/6)*(EulerGamma + log(2*Pi) - Zeta'(6)/Zeta(6)).

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)
Previous Showing 11-18 of 18 results.