cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A073002 Decimal expansion of -zeta'(2) (the first derivative of the zeta function at 2).

Original entry on oeis.org

9, 3, 7, 5, 4, 8, 2, 5, 4, 3, 1, 5, 8, 4, 3, 7, 5, 3, 7, 0, 2, 5, 7, 4, 0, 9, 4, 5, 6, 7, 8, 6, 4, 9, 7, 7, 8, 9, 7, 8, 6, 0, 2, 8, 8, 6, 1, 4, 8, 2, 9, 9, 2, 5, 8, 8, 5, 4, 3, 3, 4, 8, 0, 3, 6, 0, 4, 4, 3, 8, 1, 1, 3, 1, 2, 7, 0, 7, 5, 2, 2, 7, 9, 3, 6, 8, 9, 4, 1, 5, 1, 4, 1, 1, 5, 1, 5, 1, 7, 4, 9, 3, 1, 1, 3
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Successive derivatives of the zeta function evaluated at x=2 round to (-1)^n * n!, for the n-th derivative, and converge with increasing n. For example, in Mathematica, Derivative[5][Zeta][2] = -120.000824333. A direct formula for the n-th derivative of Zeta at x=2 is: (-1)^n*Sum_{k>=1} log(k)^n/k^2. See also A201994 and A201995. The values of successive derivatives of Zeta(x) as x->1 are given by A252898, and are also related to the factorials. - Richard R. Forberg, Dec 30 2014

Examples

			Zeta'(2) = -0.93754825431584375370257409456786497789786028861482...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.18, p. 157.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.

Crossrefs

Cf. A201994 (2nd derivative), A201995 (3rd derivative), A252898.

Programs

  • Maple
    Zeta(1,2); evalf(%, 120); # R. J. Mathar, Oct 10 2011
  • Mathematica
    (* first do *) Needs["NumericalMath`NLimit`"], (* then *) RealDigits[ N[ ND[ Zeta[z], z, 2, WorkingPrecision -> 200, Scale -> 10^-20, Terms -> 20], 111]][[1]] (* Eric W. Weisstein, May 20 2004 *)
    (* from version 6 on *) RealDigits[-Zeta'[2], 10, 105] // First (* or *) RealDigits[-Pi^2/6*(EulerGamma - 12*Log[Glaisher] + Log[2*Pi]), 10, 105] // First (* Jean-François Alcover, Apr 11 2013 *)
  • PARI
    -zeta'(2) \\ Charles R Greathouse IV, Mar 28 2012

Formula

Sum_{n >= 1} log(n) / n^2. - N. J. A. Sloane, Feb 19 2011
Pi^2(gamma + log(2Pi) - 12 log(A))/6, where A is the Glaisher-Kinkelin constant. - Charles R Greathouse IV, May 06 2013

Extensions

Definition corrected by N. J. A. Sloane, Feb 19 2011

A244115 Decimal expansion of -zeta'(3) (the first derivative of the zeta function at 3).

Original entry on oeis.org

1, 9, 8, 1, 2, 6, 2, 4, 2, 8, 8, 5, 6, 3, 6, 8, 5, 3, 3, 3, 0, 6, 8, 1, 8, 2, 1, 5, 0, 3, 2, 8, 5, 7, 9, 6, 8, 7, 5, 5, 4, 2, 7, 9, 3, 4, 6, 3, 8, 3, 5, 0, 0, 3, 3, 4, 6, 8, 8, 9, 9, 6, 3, 1, 9, 2, 7, 2, 5, 6, 6, 9, 4, 2, 2, 6, 5, 1, 1, 0, 4, 1, 5, 1, 5, 7, 0, 8, 4, 2, 1, 7, 7, 5, 9, 5, 7, 4, 2, 1, 4, 9, 9, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Jun 20 2014

Keywords

Examples

			0.19812624288563685333068182150328579687554279346383500334688996319272566942265...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-Zeta'[3], 10, 105][[1]]

Formula

Sum_{n>=1} log(n) / n^3. - Vaclav Kotesovec, Aug 22 2015

A322577 a(n) = Sum_{d|n} psi(n/d) * phi(d).

Original entry on oeis.org

1, 4, 6, 11, 10, 24, 14, 28, 26, 40, 22, 66, 26, 56, 60, 68, 34, 104, 38, 110, 84, 88, 46, 168, 74, 104, 102, 154, 58, 240, 62, 160, 132, 136, 140, 286, 74, 152, 156, 280, 82, 336, 86, 242, 260, 184, 94, 408, 146, 296, 204, 286, 106, 408, 220, 392, 228, 232, 118, 660
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 29 2019

Keywords

Comments

Dirichlet convolution of Dedekind psi function (A001615) with Euler totient function (A000010).
Dirichlet convolution of A008966 with A018804.
Dirichlet convolution of A038040 with A271102.

Crossrefs

Cf. A327251 (inverse Möbius transform), A347092 (Dirichlet inverse), A347093 (sum with it), A347135.

Programs

  • Maple
    f:= proc(n) local t;
      mul((t[2]+1)*t[1]^t[2] - (t[2]-1)*t[1]^(t[2]-2), t = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2019
  • Mathematica
    Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] EulerPhi[d], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e + 1)*p^e - (e - 1)*p^(e - 2); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    seq(n) = {dirmul(vector(n, n, eulerphi(n)), vector(n, n, n * sumdivmult(n, d, issquarefree(d)/d)))} \\ Andrew Howroyd, Aug 29 2019
    
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A322577(n) = sumdiv(n,d,A001615(n/d)*eulerphi(d)); \\ Antti Karttunen, Apr 03 2022

Formula

Dirichlet g.f.: zeta(s-1)^2 / zeta(2*s).
a(p) = 2*p, where p is prime.
Sum_{k=1..n} a(k) ~ 45*n^2*(2*Pi^4*log(n) - Pi^4 + 4*gamma*Pi^4 - 360*zeta'(4)) / (2*Pi^8), where gamma is the Euler-Mascheroni constant A001620 and for zeta'(4) see A261506. - Vaclav Kotesovec, Aug 31 2019
a(p^k) = (k+1)*p^k - (k-1)*p^(k-2) where p is prime. - Robert Israel, Sep 01 2019
a(n) = Sum_{k=1..n} psi(gcd(n,k)). - Ridouane Oudra, Nov 29 2019
a(n) = Sum_{k=1..n} psi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A372928 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^3.

Original entry on oeis.org

1, 15, 53, 176, 249, 795, 685, 1856, 2133, 3735, 2661, 9328, 4393, 10275, 13197, 18432, 9825, 31995, 13717, 43824, 36305, 39915, 24333, 98368, 46625, 65895, 76545, 120560, 48777, 197955, 59581, 176128, 141033, 147375, 170565, 375408, 101305, 205755, 232829, 462144
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e - e/p^3 + 1) * p^(3*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^3*numdiv(d));

Formula

a(n) = Sum_{d|n} mu(n/d) * d^3 * tau(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (e - e/p^3 + 1) * p^(3*e).
Dirichlet g.f.: zeta(s-3)^2/zeta(s).
Sum_{k=1..n} a(k) ~ (n^4/(4*zeta(4))) * (log(n) + 2*gamma - 1/4 - zeta'(4)/zeta(4)), where gamma is Euler's constant (A001620). (End)

A340440 Decimal expansion of Sum_{k>=2} log(k)/(k^2-1).

Original entry on oeis.org

1, 0, 2, 3, 1, 3, 8, 7, 2, 6, 4, 2, 7, 9, 3, 9, 2, 9, 5, 5, 3, 5, 0, 8, 8, 0, 7, 6, 9, 7, 5, 2, 1, 8, 0, 9, 7, 4, 9, 2, 1, 4, 5, 2, 7, 9, 3, 6, 6, 0, 8, 3, 2, 5, 9, 3, 6, 6, 3, 4, 8, 6, 1, 7, 9, 1, 2, 1, 6, 5, 3, 1, 9, 2, 2, 8, 5, 2, 3, 2, 7, 8, 9, 2, 2, 7, 5, 3, 1, 9, 7, 2, 4, 1, 2, 1, 7, 0, 8, 7, 5, 0, 1, 0, 7
Offset: 1

Views

Author

R. J. Mathar, Jan 07 2021

Keywords

Examples

			1.0231387264279392955...
		

Crossrefs

Programs

Formula

Equals Sum_{i>=1} -zeta'(2i) = A073002 + A261506 - Sum_{i>=3} zeta'(2i).
Sum_{k>=2} log(k)/(k^2-s) = -Sum_{i>=1} s^(i-1)*zeta'(2i) for |s|<4. - R. J. Mathar, May 03 2021
Equals log(2)/2 + Sum_{k>=1} (zeta(2*k)-1)/(2*k-1). - Amiram Eldar, Jun 08 2021

A340485 Decimal expansion of Sum_{k>=2} log(k)/(k^2-1)^2.

Original entry on oeis.org

1, 0, 7, 3, 2, 5, 3, 7, 1, 6, 4, 2, 0, 3, 0, 2, 3, 9, 6, 9, 5, 0, 6, 0, 2, 4, 8, 5, 0, 2, 1, 8, 2, 8, 8, 0, 3, 2, 4, 7, 2, 7, 9, 8, 9, 8, 2, 0, 4, 3, 6, 1, 5, 7, 4, 8, 7, 9, 3, 3, 8, 9, 2, 4, 6, 9, 8, 2, 7, 9, 9, 0, 2, 0, 8, 7, 4, 8, 6, 9, 4, 5, 1, 6, 8, 5, 3, 4, 3, 9, 9, 1, 9, 9, 3, 2, 6, 1, 2, 5, 3, 9, 7, 1, 0, 7
Offset: 0

Views

Author

R. J. Mathar, Jan 09 2021

Keywords

Examples

			0.10732537164203023969506024850218288032472798982043615...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta'(4) - Sum(i * Zeta'(2*i+2), i = 2 .. infinity), 120); # Amiram Eldar, Mar 09 2024
  • PARI
    sumpos(k=2, log(k)/(k^2-1)^2) \\ Michel Marcus, Jan 09 2021
    
  • PARI
    -zeta'(4) - sumpos(i=2, i*zeta'(2*i+2)) \\ Amiram Eldar, Mar 09 2024

Formula

Equals -Sum_{i>=1} i*zeta'(2*i+2) = A261506 - Sum_{i>=2} i*zeta'(2*i+2).

Extensions

More terms from Amiram Eldar, Mar 09 2024

A368883 The number of infinitary divisors of n that are cubefree.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2024

Keywords

Comments

The number of infinitary divisors of n that are squarefree is A055076(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[e, 4], 1, 2, 2, 2, 3, 3, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> [1,2,2,3][x%4+1], factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 2 if e == 1 or 2 (mod 4), 3 if e == 3 (mod 4), and 1 if e == 0 (mod 4).
a(n) >= 1, with equality if and only if n is a 4th power (A000583).
a(n) <= A037445(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(4*s) * Product_{p prime} (1 + 2/p^s + 2/p^(2*s) + 3/p^(3*s)).
From Vaclav Kotesovec, Jan 09 2024: (Start)
Dirichlet g.f.: zeta(4*s) * zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 4/p^(4*s) + 3/p^(5*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 4/p^(4*s) + 3/p^(5*s)).
Sum_{k=1..n} a(k) ~ f(1) * zeta(4) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1) + 4*zeta'(4)/zeta(4)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 4/p^4 + 3/p^5) = 0.5857770602270641007515615375942370402509903724261557972367075945186871...,
f'(1) = f(1) * Sum_{p prime} (2*p^2 - p + 15) * log(p) / (p^4 + p^3 + p - 3) = f(1) * 1.319786264712492218167871116508220489817987315752197198819256094...,
gamma is the Euler-Mascheroni constant A001620, zeta(4) = Pi^4/90 = A013662 and for zeta'(4) see A261506. (End)

A045771 Number of similar sublattices of index n^2 in root lattice D_4.

Original entry on oeis.org

1, 1, 8, 1, 12, 8, 16, 1, 41, 12, 24, 8, 28, 16, 96, 1, 36, 41, 40, 12, 128, 24, 48, 8, 97, 28, 176, 16, 60, 96, 64, 1, 192, 36, 192, 41, 76, 40, 224, 12, 84, 128, 88, 24, 492, 48, 96, 8, 177, 97, 288, 28, 108, 176, 288, 16, 320, 60, 120, 96, 124, 64, 656, 1
Offset: 1

Views

Author

Michael Baake (baake(AT)miles.math.ualberta.ca)

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> If[1 <= p <= 2, 1, (e + 1) p^e + (2 (1 + (e p - e - 1)*p^e))/((p - 1)^2)]] &, 64] (*  Michael De Vlieger, Mar 02 2018 *)
  • PARI
    fp(p, e) = if (p % 2, (e+1)*p^e + 2*(1-(e+1)*p^e+e*p^(e+1))/(p-1)^2, 1);
    a(n) = { my(f = factor(n)); prod(i=1, #f~, fp(f[i, 1], f[i, 2]));} \\ Michel Marcus, Mar 03 2014

Formula

Multiplicative with a(2^p) = 1, a(p^e) = (e+1)*p^e + (2*(1+(e*p-e-1)*p^e))/((p-1)^2), p>2. - Christian G. Bower, May 21 2005
From Amiram Eldar, May 26 2025: (Start)
Dirichlet g.f.: (zeta(s-1)^2 * zeta(s)^2 / zeta(2*s)) * (1 - 1/2^(s-1))^2/(1 + 1/2^s).
Sum_{k=1..n} a(k) ~ (n^2/4)*(log(n) + 2*gamma - 1/2 + 11*log(2)/5 + 2*zeta'(2)/zeta(2) - 2*zeta'(4)/zeta(4)), where gamma is Euler's constant (A001620). (End)

Extensions

More terms from Michel Marcus, Mar 03 2014

A153517 Floor of reciprocal of Zeta'(n), where Zeta'(n) is the derivative of Riemann zeta function.

Original entry on oeis.org

-2, -6, -15, -35, -78, -166, -345, -707, -1435, -2899, -5835, -11721, -23507, -47101, -94318, -188791, -377786, -755845, -1512052, -3024587, -6049818, -12100492, -24202125, -48405772, -96813572, -193629847, -387263296
Offset: 2

Views

Author

Vladimir Reshetnikov, Dec 28 2008

Keywords

Examples

			Floor(1/Zeta'(2)) = -2.
		

Crossrefs

a(2) = floor(1/-A073002), a(3) = floor(1/-A244115), a(4) = floor(1/-A261506).

Programs

  • Mathematica
    Table[Floor[1/Zeta'[k]], {k, 2, 40}]
  • PARI
    a(n) = floor(1/zeta'(n)) \\ Iain Fox, Nov 08 2017

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)
Showing 1-10 of 12 results. Next