cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A073002 Decimal expansion of -zeta'(2) (the first derivative of the zeta function at 2).

Original entry on oeis.org

9, 3, 7, 5, 4, 8, 2, 5, 4, 3, 1, 5, 8, 4, 3, 7, 5, 3, 7, 0, 2, 5, 7, 4, 0, 9, 4, 5, 6, 7, 8, 6, 4, 9, 7, 7, 8, 9, 7, 8, 6, 0, 2, 8, 8, 6, 1, 4, 8, 2, 9, 9, 2, 5, 8, 8, 5, 4, 3, 3, 4, 8, 0, 3, 6, 0, 4, 4, 3, 8, 1, 1, 3, 1, 2, 7, 0, 7, 5, 2, 2, 7, 9, 3, 6, 8, 9, 4, 1, 5, 1, 4, 1, 1, 5, 1, 5, 1, 7, 4, 9, 3, 1, 1, 3
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Successive derivatives of the zeta function evaluated at x=2 round to (-1)^n * n!, for the n-th derivative, and converge with increasing n. For example, in Mathematica, Derivative[5][Zeta][2] = -120.000824333. A direct formula for the n-th derivative of Zeta at x=2 is: (-1)^n*Sum_{k>=1} log(k)^n/k^2. See also A201994 and A201995. The values of successive derivatives of Zeta(x) as x->1 are given by A252898, and are also related to the factorials. - Richard R. Forberg, Dec 30 2014

Examples

			Zeta'(2) = -0.93754825431584375370257409456786497789786028861482...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.18, p. 157.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.

Crossrefs

Cf. A201994 (2nd derivative), A201995 (3rd derivative), A252898.

Programs

  • Maple
    Zeta(1,2); evalf(%, 120); # R. J. Mathar, Oct 10 2011
  • Mathematica
    (* first do *) Needs["NumericalMath`NLimit`"], (* then *) RealDigits[ N[ ND[ Zeta[z], z, 2, WorkingPrecision -> 200, Scale -> 10^-20, Terms -> 20], 111]][[1]] (* Eric W. Weisstein, May 20 2004 *)
    (* from version 6 on *) RealDigits[-Zeta'[2], 10, 105] // First (* or *) RealDigits[-Pi^2/6*(EulerGamma - 12*Log[Glaisher] + Log[2*Pi]), 10, 105] // First (* Jean-François Alcover, Apr 11 2013 *)
  • PARI
    -zeta'(2) \\ Charles R Greathouse IV, Mar 28 2012

Formula

Sum_{n >= 1} log(n) / n^2. - N. J. A. Sloane, Feb 19 2011
Pi^2(gamma + log(2Pi) - 12 log(A))/6, where A is the Glaisher-Kinkelin constant. - Charles R Greathouse IV, May 06 2013

Extensions

Definition corrected by N. J. A. Sloane, Feb 19 2011

A240966 Decimal expansion of zeta'(-2) (the derivative of Riemann's zeta function at -2).

Original entry on oeis.org

0, 3, 0, 4, 4, 8, 4, 5, 7, 0, 5, 8, 3, 9, 3, 2, 7, 0, 7, 8, 0, 2, 5, 1, 5, 3, 0, 4, 7, 1, 1, 5, 4, 7, 7, 6, 6, 4, 7, 0, 0, 0, 4, 8, 3, 5, 4, 4, 9, 7, 3, 9, 3, 6, 2, 5, 2, 9, 7, 1, 8, 8, 9, 8, 5, 9, 0, 3, 7, 8, 1, 7, 9, 4, 4, 9, 3, 6, 8, 9, 8, 6, 7, 7, 7, 9, 4, 5, 8, 4, 8, 8, 0, 8, 7, 4, 4, 9, 5, 9, 7, 0, 3, 6
Offset: 0

Views

Author

Jean-François Alcover, Aug 05 2014

Keywords

Examples

			-0.030448457058393270780251530471154776647000483544973936252971889859...
		

Crossrefs

Cf. A084448 (zeta'(-1)), A075700 (zeta'(0)), A073002 (zeta'(2)), A244115 (zeta'(3)).

Programs

  • Mathematica
    Join[{0}, RealDigits[-Zeta[3]/(4*Pi^2), 10, 103] // First]

Formula

zeta'(-2) = -zeta(3)/(4*Pi^2).
Equals -log(A243262). - Vaclav Kotesovec, Feb 22 2015

A261506 Decimal expansion of -zeta'(4).

Original entry on oeis.org

0, 6, 8, 9, 1, 1, 2, 6, 5, 8, 9, 6, 1, 2, 5, 3, 7, 9, 8, 4, 8, 8, 2, 9, 3, 6, 5, 5, 8, 7, 4, 4, 0, 8, 2, 7, 1, 5, 0, 0, 1, 6, 3, 7, 4, 8, 7, 1, 3, 7, 8, 4, 6, 3, 8, 2, 7, 5, 8, 5, 7, 0, 6, 0, 1, 8, 4, 2, 8, 4, 9, 8, 5, 2, 7, 6, 2, 1, 2, 0, 1, 3, 3, 4, 7, 8, 0, 4, 1, 0, 3, 8, 9, 8, 4, 7, 6, 0, 2, 2, 9, 0, 1, 8, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			0.06891126589612537984882936558744082715001637487137...
		

Crossrefs

Cf. A075700 (0), A073002 (2), A244115 (3).
Cf. A084448 (-1), A240966 (-2), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8).

Programs

  • Mathematica
    Flatten[{0, RealDigits[-Zeta'[4], 10, 105][[1]]}]

Formula

Sum_{n>=1} log(n) / n^4.

A373059 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, n)/gcd(x_1, x_2, n).

Original entry on oeis.org

1, 5, 13, 25, 41, 65, 85, 121, 157, 205, 221, 325, 313, 425, 533, 569, 545, 785, 685, 1025, 1105, 1105, 1013, 1573, 1441, 1565, 1777, 2125, 1625, 2665, 1861, 2617, 2873, 2725, 3485, 3925, 2665, 3425, 4069, 4961, 3281, 5525, 3613, 5525, 6437, 5065, 4325, 7397, 5965
Offset: 1

Views

Author

Seiichi Manyama, May 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 27 2024 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, gcd(i, n)/gcd([i, j, n])));
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2);} \\ Amiram Eldar, May 27 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * (n/d) * sigma_2(d^2)/sigma(d^2).
From Amiram Eldar, May 27 2024: (Start)
Multiplicative with a(p^e) = (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2.
Dirichlet g.f.: zeta(s) * zeta(s-2)^2 / zeta(s-1)^2.
Sum_{k=1..n} a(k) ~ (2*zeta(3)*n^3/(15*zeta(4))) * (log(n) + 2*gamma - 1/3 - 2*zeta'(2)/zeta(2) + zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620). (End)

A349220 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^3.

Original entry on oeis.org

0, 5, 9, 7, 0, 5, 9, 0, 6, 1, 6, 0, 1, 9, 5, 3, 5, 8, 3, 6, 3, 4, 2, 9, 2, 6, 6, 2, 8, 7, 9, 2, 5, 6, 7, 8, 3, 1, 6, 9, 2, 6, 8, 7, 3, 1, 5, 6, 5, 1, 5, 9, 6, 9, 2, 3, 3, 2, 5, 1, 1, 7, 8, 0, 5, 2, 4, 0, 1, 0, 0, 5, 6, 0, 1, 1, 6, 2, 2, 8, 0, 2, 3, 4, 6, 3, 7, 0, 2, 4, 9, 7, 1, 6, 9, 2, 8, 9, 5, 1, 8, 7, 0, 8, 3, 1, 8, 1, 9, 6, 7, 0, 1, 0, 8, 2, 1, 6, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 3.

Examples

			0.0597059061601953583634292662879256783169268731565...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Log[2] Zeta[3] + 3 Zeta'[3])/4, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^3) \\ Michel Marcus, Nov 11 2021

Formula

Equals (log(2) * zeta(3) + 3 * zeta'(3)) / 4.

A365404 The sum of the unitary divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The number of these divisors is A323308(n).
The sum of the unitary divisors of the largest square dividing n is A365403(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^(f[i,2]\2)));}

Formula

a(n) = A034448(A000188(n)).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p) = 1 and a(p^e) = p^floor(e/2) + 1 for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-1).
Sum_{k=1..n} a(k) ~ (n/(2*zeta(3))) * (log(n) + 3*gamma - 1 - 4*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).

A369309 The number of powerful divisors d of n such that n/d is also powerful.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := If[e == 2, 2, e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x==2, 2, x-1), factor(n)[,2]));

Formula

Multiplicative with a(p^2) = 2 and a(p^e) = e-1 if e != 2.
a(n) > 0 if and only if n is powerful (A001694).
Dirichlet g.f.: (zeta(2*s)*zeta(3*s)/zeta(6*s))^2.
Sum_{k=1..n} a(k) ~ (zeta(3/2)^2/(2*zeta(3)^2)) * sqrt(n) * (log(n) + 4*gamma - 2 + 6*zeta'(3/2)/zeta(3/2) - 12*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).

A153517 Floor of reciprocal of Zeta'(n), where Zeta'(n) is the derivative of Riemann zeta function.

Original entry on oeis.org

-2, -6, -15, -35, -78, -166, -345, -707, -1435, -2899, -5835, -11721, -23507, -47101, -94318, -188791, -377786, -755845, -1512052, -3024587, -6049818, -12100492, -24202125, -48405772, -96813572, -193629847, -387263296
Offset: 2

Views

Author

Vladimir Reshetnikov, Dec 28 2008

Keywords

Examples

			Floor(1/Zeta'(2)) = -2.
		

Crossrefs

a(2) = floor(1/-A073002), a(3) = floor(1/-A244115), a(4) = floor(1/-A261506).

Programs

  • Mathematica
    Table[Floor[1/Zeta'[k]], {k, 2, 40}]
  • PARI
    a(n) = floor(1/zeta'(n)) \\ Iain Fox, Nov 08 2017

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)

A309153 a(n) = A000203(n)*A001227(n).

Original entry on oeis.org

1, 3, 8, 7, 12, 24, 16, 15, 39, 36, 24, 56, 28, 48, 96, 31, 36, 117, 40, 84, 128, 72, 48, 120, 93, 84, 160, 112, 60, 288, 64, 63, 192, 108, 192, 273, 76, 120, 224, 180, 84, 384, 88, 168, 468, 144, 96, 248, 171, 279, 288, 196, 108, 480, 288, 240, 320, 180, 120, 672, 124, 192, 624, 127, 336, 576, 136, 252, 384
Offset: 1

Views

Author

Omar E. Pol, Jul 14 2019

Keywords

Comments

A001227(n) is denoted by Delta_0(n) in Glaisher 1907.
a(n) = A000203(n) iff n is a power of 2.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, OddQ] DivisorSigma[1, #] &, 69] (* Michael De Vlieger, Nov 22 2019 *)
    f[p_, e_] := (e+1)*(p^(e+1)-1)/(p-1); f[2, e_] := 2^(e+1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)

Formula

a(n) = sigma(n)*delta(n).
Multiplicative with a(2^e) = 2^(e+1) - 1 and a(p^e) = (e+1)*(p^(e+1)-1)/(p-1) for p > 2. - Amiram Eldar, Nov 01 2022
From Amiram Eldar, Dec 04 2023: (Start)
Dirichlet g.f.: (4^s - 3*2^s + 2)/(4^s - 2) * (zeta(s)*zeta(s-1))^2/zeta(2*s-1).
Sum_{k=1..n} a(k) ~ (Pi^4/(168*zeta(3))) * n^2 * (log(n) + 2*gamma - 1/2 + 22*log(2)/21 + 2*zeta'(2)/zeta(2) - 2*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620). (End)
Showing 1-10 of 16 results. Next