cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A243262 Decimal expansion of the generalized Glaisher-Kinkelin constant A(2).

Original entry on oeis.org

1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5
Offset: 1

Views

Author

Keywords

Comments

Also known as the second Bendersky constant.
This is likely the same as the constant B considered in section 3 of the Choi and Srivastava link. - R. J. Mathar, Oct 03 2016

Examples

			1.03091675219739211419331309646694229...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First
    RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(0) = sqrt(2*Pi) (A019727),
A(1) = A = Glaisher-Kinkelin constant (A074962),
A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)).
Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015

A266262 Decimal expansion of zeta'(-11) (the derivative of Riemann's zeta function at -11) (negated).

Original entry on oeis.org

0, 1, 2, 7, 5, 2, 9, 8, 4, 4, 7, 9, 9, 6, 6, 6, 5, 6, 1, 1, 3, 5, 2, 2, 5, 2, 5, 4, 8, 8, 7, 2, 5, 7, 9, 8, 1, 5, 6, 2, 3, 8, 9, 3, 7, 0, 4, 9, 8, 7, 4, 2, 9, 2, 7, 9, 3, 2, 4, 6, 3, 6, 6, 6, 6, 1, 1, 4, 0, 7, 0, 2, 3, 2, 0, 6, 2, 1, 2, 4, 7, 4, 0, 9, 0, 4, 8, 1, 9, 3, 5, 4, 2
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-0.012752984479966656113522525488725798156238937049874292793246366661...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    Join[{0}, RealDigits[Zeta'[-11], 10, 100] // First]

Formula

zeta'(-n) = HarmonicNumber(n)*BernoulliB(n+1)/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-11) = - 57844301/908107200 - log(A(11)).

Extensions

Keyword cons added by Rick L. Shepherd, May 29 2016

A260660 Decimal expansion of zeta'(-13) (the derivative of Riemann's zeta function at -13).

Original entry on oeis.org

0, 6, 3, 7, 4, 9, 8, 7, 3, 7, 4, 4, 5, 7, 6, 8, 8, 0, 2, 8, 6, 0, 3, 8, 6, 8, 1, 4, 7, 3, 3, 3, 5, 0, 5, 5, 6, 4, 8, 8, 2, 7, 3, 5, 5, 3, 1, 2, 7, 5, 8, 4, 9, 1, 3, 8, 5, 1, 0, 0, 8, 8, 5, 8, 8, 7, 7, 3, 7, 0, 6, 4, 2, 0, 1, 5, 6, 6, 6, 8, 7, 0, 9, 4, 7, 0, 9, 2, 6, 7, 8, 1, 5, 3, 5, 8, 2, 6, 3, 1, 8, 7, 8, 2, 4, 3, 7
Offset: 0

Views

Author

G. C. Greubel, Nov 13 2015

Keywords

Examples

			0.06374987374457688028603868147333505564882735...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    N[Zeta'[-13]]
    Join[{0}, RealDigits[Zeta'[-13], 10, 1500] // First]
  • PARI
    zeta'(-13) \\ Altug Alkan, Nov 13 2015

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-13) = (1145993/4324320) - log(A(13)).
zeta'(-13) = 1145993/4324320 - gamma/12 - log(2*Pi)/12 + 6081075*Zeta'(14) / (8*Pi^14), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2015

A266260 Decimal expansion of zeta'(-9) (the derivative of Riemann's zeta function at -9).

Original entry on oeis.org

0, 0, 3, 1, 3, 0, 1, 4, 5, 3, 1, 9, 7, 8, 8, 5, 7, 2, 7, 5, 4, 9, 2, 5, 7, 6, 8, 2, 9, 0, 7, 8, 5, 4, 4, 6, 7, 0, 2, 6, 6, 9, 3, 6, 5, 8, 6, 5, 4, 8, 1, 5, 1, 5, 9, 6, 4, 9, 0, 5, 1, 3, 3, 2, 0, 5, 4, 3, 4, 7, 1, 6, 3, 0, 1, 4, 2, 9, 6, 4, 3, 4, 9, 4, 3, 0, 9, 5, 1
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			0.0031301453197885727549257682907854467026693658654815.....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[Zeta'[-9], 10, 100] // First]
    N[Zeta'[-9], 100]

Formula

zeta'(-n) = HarmonicNumber(n)*BernoulliB(n+1)/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-9) = 7129/332640 - log(A(9)).

A266270 Decimal expansion of zeta'(-15) (the derivative of Riemann's zeta function at -15).

Original entry on oeis.org

4, 0, 0, 3, 1, 9, 3, 0, 2, 8, 0, 7, 7, 2, 5, 5, 9, 3, 8, 4, 3, 5, 8, 0, 3, 1, 7, 5, 2, 0, 3, 2, 0, 3, 6, 7, 2, 0, 1, 2, 6, 1, 2, 8, 6, 2, 6, 6, 2, 3, 2, 9, 4, 4, 2, 8, 4, 1, 0, 6, 9, 4, 2, 6, 3, 9, 0, 3, 0, 3, 3, 6, 0, 2, 9, 3, 1, 7, 2, 0, 0, 7, 6, 4, 2, 6, 1, 4, 6, 4, 2, 2, 2, 6, 4, 3, 9, 5, 4, 8, 4, 5, 7, 8, 4, 3, 1, 4, 3, 1, 3, 8, 3, 2
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-0.400319302807725593843580317520320367201261286266232944284106942....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-15], 100]]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-15) = -4325053069/2940537600 - log(A(15)).

A266272 Decimal expansion of zeta'(-17) (the derivative of Riemann's zeta function at -17).

Original entry on oeis.org

3, 1, 2, 8, 6, 4, 5, 3, 3, 2, 1, 2, 4, 1, 5, 7, 8, 7, 5, 6, 8, 4, 4, 5, 2, 6, 3, 9, 1, 5, 3, 3, 3, 0, 5, 4, 8, 2, 2, 6, 3, 3, 9, 0, 7, 7, 5, 6, 5, 4, 7, 9, 7, 4, 2, 4, 9, 1, 6, 5, 7, 7, 0, 6, 1, 1, 4, 3, 4, 1, 1, 2, 9, 6, 9, 3, 4, 0, 0, 5, 3, 4, 7, 1, 1, 7, 3, 6, 2, 8, 6, 6, 6, 3
Offset: 1

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			3.1286453321241578756844526391533305482263390775654797424916577061....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-17], 100]]

Formula

zeta'(-n) = HarmonicNumber(n)*BernoulliB(n+1)/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-17) = 1848652896341/175991175360 - log(A(17)).

Extensions

Offset corrected by Rick L. Shepherd, May 21 2016

A266261 Decimal expansion of zeta'(-10) (the derivative of Riemann's zeta function at -10).

Original entry on oeis.org

0, 1, 8, 9, 2, 9, 9, 2, 6, 3, 3, 8, 1, 4, 0, 3, 7, 4, 2, 2, 8, 9, 8, 0, 5, 0, 2, 2, 9, 0, 3, 4, 6, 7, 9, 5, 2, 3, 1, 9, 8, 5, 2, 5, 8, 0, 9, 5, 1, 6, 9, 5, 5, 5, 8, 1, 0, 4, 8, 6, 2, 3, 1, 1, 0, 0, 7, 0, 2, 7, 0, 5, 1, 5, 5, 0, 4, 1, 4, 8, 0, 5, 5, 2, 3, 5, 1, 6, 0, 7, 3
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-0.0189299263381403742289805022903467952319852580951695558
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    Join[{0}, RealDigits[-(5/264)*(Zeta[11]/Zeta[10]), 10, 100] // First]

Formula

zeta'(-10) = -14175*zeta(11)/(8*Pi^10) = log(A(10)).
Equals -(5/264)*(zeta(11)/zeta(10)).

A266263 Decimal expansion of zeta'(-12) (the derivative of Riemann's zeta function at -12).

Original entry on oeis.org

0, 6, 3, 2, 7, 0, 5, 8, 3, 3, 4, 1, 4, 6, 3, 0, 0, 0, 5, 9, 5, 1, 8, 2, 3, 0, 1, 2, 3, 4, 3, 0, 7, 7, 6, 7, 5, 1, 1, 4, 1, 8, 1, 8, 4, 7, 5, 3, 2, 3, 6, 3, 7, 6, 6, 7, 9, 5, 6, 5, 9, 4, 5, 6, 7, 0, 6, 2, 1, 5, 2, 5, 4, 6, 0, 6, 7, 4, 9, 7, 6, 7, 3, 7, 4, 7, 1, 0, 3, 4, 3, 7, 1
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			0.06327058334146300059518230123430776751141818475323637667956594567...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    Join[{0}, RealDigits[(691/10920)*(Zeta[13]/Zeta[12]), 10, 100] // First]

Formula

zeta'(-12) = (-467775*Zeta(13))/(8*Pi^12) = - log(A(12)).
Equals (691/10920)*(zeta(13)/zeta(12)).

A266264 Decimal expansion of zeta'(-14) (the derivative of Riemann's zeta function at -14).

Original entry on oeis.org

2, 9, 1, 6, 5, 7, 7, 2, 4, 7, 4, 3, 8, 7, 3, 5, 2, 0, 3, 2, 1, 2, 2, 4, 0, 0, 3, 0, 7, 0, 2, 5, 0, 6, 6, 6, 9, 7, 0, 2, 6, 3, 0, 3, 8, 5, 3, 3, 0, 9, 0, 8, 3, 2, 1, 4, 9, 9, 0, 9, 3, 5, 9, 6, 5, 6, 5, 1, 5, 1, 8, 7, 0, 2, 8, 4, 6, 3, 7, 5, 8, 6, 7, 7, 5, 0, 9, 3, 9, 2, 4, 0, 9, 7, 2
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-0.29165772474387352032122400307025066697026303853309083214990....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-14], 100]]

Formula

zeta'(-14) = - (42567525*zeta(15))/(16*Pi^14) = - log(A(14)).
Equals -(7/24)*(zeta(15)/zeta(14)).

A266271 Decimal expansion of zeta'(-16) (the derivative of Riemann's zeta function at -16).

Original entry on oeis.org

1, 7, 7, 3, 0, 2, 5, 6, 6, 0, 8, 9, 9, 0, 9, 6, 3, 9, 6, 2, 4, 7, 7, 8, 7, 3, 4, 4, 1, 8, 9, 2, 9, 4, 4, 8, 1, 3, 5, 5, 4, 1, 9, 8, 2, 7, 6, 4, 6, 9, 9, 9, 1, 7, 7, 1, 6, 3, 9, 1, 7, 3, 0, 7, 7, 3, 7, 2, 8, 0, 9, 2, 6, 9, 0, 6, 6, 5, 5, 3, 1, 0, 4, 5, 6, 0, 2, 3, 7, 1, 2, 7, 5, 0, 5
Offset: 1

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			1.7730256608990963962477873441892944813554198276469991771639173077.....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-16], 100]]

Formula

zeta'(-16) = (638512875*zeta(17))/(4*Pi^16) = - log(A(16)).
Equals (3617/2040)*(zeta(17)/zeta(16)).

Extensions

Offset corrected by Rick L. Shepherd, May 21 2016
Showing 1-10 of 23 results. Next