A266560 Decimal expansion of the generalized Glaisher-Kinkelin constant A(14).
1, 3, 3, 8, 6, 4, 4, 7, 5, 4, 2, 4, 1, 5, 3, 6, 2, 9, 9, 5, 5, 8, 0, 4, 6, 9, 5, 8, 8, 7, 3, 2, 5, 5, 1, 4, 2, 5, 4, 2, 0, 9, 2, 5, 3, 7, 0, 6, 2, 7, 4, 2, 4, 8, 0, 2, 3, 4, 0, 6, 2, 0, 9, 4, 5, 8, 9, 7, 9, 5, 3, 1, 5, 2, 8, 5, 1, 9, 6, 4, 8, 4, 5, 5, 2, 4, 5, 2, 9, 3, 1, 3, 9, 8, 7
Offset: 1
Examples
1.338644754241536299558046958873255142542092537062742480234...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2002
Crossrefs
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
Programs
-
Mathematica
Exp[N[(BernoulliB[14]/4)*(Zeta[15]/Zeta[14]), 200]]
Formula
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th Harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(14) = exp(-zeta'(-14)) = exp((B(14)/4)*(zeta(15)/zeta(14))).
A(14) = exp(14! * Zeta(15) / (2^15 * Pi^14)). - Vaclav Kotesovec, Jan 01 2016
Comments