cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A266273 Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).

Original entry on oeis.org

1, 3, 7, 4, 2, 7, 6, 8, 2, 5, 0, 2, 1, 4, 0, 5, 4, 4, 3, 5, 2, 2, 0, 5, 6, 4, 1, 9, 0, 5, 1, 8, 5, 5, 1, 0, 7, 3, 0, 9, 5, 3, 7, 2, 1, 5, 7, 7, 0, 4, 9, 8, 5, 6, 0, 4, 7, 4, 5, 6, 5, 1, 5, 3, 4, 8, 8, 8, 9, 4, 6, 3, 3, 7, 8, 8, 5, 8, 5, 3, 8, 8, 2, 3, 4, 0, 6, 0, 9, 9, 0, 0, 3, 2, 3
Offset: 2

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-13.74276825021405443522056419051855107309537215770498560....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-18], 100]]

Formula

zeta'(-18) = -(97692469875*zeta(19))/(8*Pi^18) = - log(A(18)).
Equals -(43867/3192)*(zeta(19)/zeta(18)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266274 Decimal expansion of zeta'(-19) (the derivative of Riemann's zeta function at -19) (negated).

Original entry on oeis.org

2, 9, 9, 6, 5, 5, 2, 9, 8, 3, 1, 3, 9, 2, 3, 5, 1, 9, 3, 9, 4, 3, 1, 8, 6, 5, 2, 9, 7, 2, 7, 4, 2, 0, 1, 7, 9, 1, 9, 0, 8, 2, 2, 6, 1, 0, 9, 1, 1, 5, 5, 6, 5, 9, 1, 5, 8, 8, 1, 8, 7, 1, 6, 6, 8, 2, 0, 5, 7, 6, 1, 6, 0, 2, 8, 6, 7, 6, 7, 7, 6, 1, 1, 7, 2, 6, 8, 7, 3, 6, 3, 0, 3, 4
Offset: 2

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			-29.965529831392351939431865297274201791908226109115565915881....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-19], 100]]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-19) = -48069674759189/512143632000 - log(A(19)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266275 Decimal expansion of zeta'(-20) (the derivative of Riemann's zeta function at -20).

Original entry on oeis.org

1, 3, 2, 2, 8, 0, 9, 9, 7, 5, 0, 4, 2, 1, 2, 5, 1, 4, 5, 2, 7, 0, 9, 8, 2, 1, 1, 5, 8, 5, 7, 8, 5, 5, 1, 8, 6, 8, 0, 6, 4, 8, 0, 0, 9, 9, 9, 9, 5, 5, 0, 3, 1, 4, 5, 8, 8, 4, 7, 4, 5, 0, 1, 9, 2, 4, 1, 4, 2, 9, 1, 5, 7, 1, 9, 9, 4, 0, 4, 2, 9, 3, 8, 7, 7, 8, 3, 9, 4, 6, 4
Offset: 3

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			132.28099750421251452709821158578551868064800999955031458847450192414...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-20], 100]]

Formula

zeta'(-20) = (9280784638125*zeta(21))/(8*Pi^20) = - log(A(20)).
Equals (174611/1320)*(zeta(21)/zeta(20)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A261506 Decimal expansion of -zeta'(4).

Original entry on oeis.org

0, 6, 8, 9, 1, 1, 2, 6, 5, 8, 9, 6, 1, 2, 5, 3, 7, 9, 8, 4, 8, 8, 2, 9, 3, 6, 5, 5, 8, 7, 4, 4, 0, 8, 2, 7, 1, 5, 0, 0, 1, 6, 3, 7, 4, 8, 7, 1, 3, 7, 8, 4, 6, 3, 8, 2, 7, 5, 8, 5, 7, 0, 6, 0, 1, 8, 4, 2, 8, 4, 9, 8, 5, 2, 7, 6, 2, 1, 2, 0, 1, 3, 3, 4, 7, 8, 0, 4, 1, 0, 3, 8, 9, 8, 4, 7, 6, 0, 2, 2, 9, 0, 1, 8, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			0.06891126589612537984882936558744082715001637487137...
		

Crossrefs

Cf. A075700 (0), A073002 (2), A244115 (3).
Cf. A084448 (-1), A240966 (-2), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8).

Programs

  • Mathematica
    Flatten[{0, RealDigits[-Zeta'[4], 10, 105][[1]]}]

Formula

Sum_{n>=1} log(n) / n^4.

A271173 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(7) (negated).

Original entry on oeis.org

0, 1, 0, 0, 7, 4, 9, 2, 8, 7, 4, 8, 4, 1, 2, 1, 8, 7, 9, 1, 8, 9, 6, 1, 3, 3, 8, 0, 7, 3, 9, 2, 1, 0, 6, 7, 9, 5, 9, 5, 2, 5, 6, 8, 3, 7, 0, 7, 6, 4, 6, 0, 1, 0, 2, 5, 2, 7, 9, 2, 1, 8, 5, 2, 7, 4, 4, 2, 8, 8, 3, 1, 0, 2, 5, 9, 0, 1, 2, 6, 1, 5, 1, 5, 5, 4, 8, 1, 8, 2, 1, 2, 9, 7, 4, 8
Offset: 0

Views

Author

G. C. Greubel, Apr 01 2016

Keywords

Comments

The logarithm of the seventh Bendersky constant.

Examples

			-0.010074928748412187918961338073921...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[(BernoulliB[8]/8)*(EulerGamma + Log[2*Pi] - Zeta'[8]/Zeta[8]), 10, 100] // First]

Formula

log(A(7)) = (1/8)*HarmonicNumber(7)*Bernoulli(8) - RiemannZeta'(-7).
log(A(7)) = (Bernoulli(8)/8)*(EulerGamma + log(2*Pi) - Zeta'(8)/Zeta(8)).

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)
Previous Showing 11-16 of 16 results.