cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A162884 Half the difference between the larger and smaller term of the n-th amicable pair.

Original entry on oeis.org

32, 13, 152, 272, 68, 56, 1155, 560, 6532, 32, 2025, 9009, 4490, 11835, 8775, 392, 5756, 13210, 2240, 2288, 9032, 2860, 42272, 40652, 55426, 21592, 8944, 8575, 5840, 1755, 34648, 38072, 33536, 38296, 4664, 57796, 35296, 30555, 10856, 41384, 88965, 22496
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 16 2009

Keywords

Examples

			a(7)=1155 because the 7th pair of amicable numbers is 12285 and 14595; and (14595-12285)/2=1155.
		

Crossrefs

Programs

  • Maple
    read("transforms3") ; L002046 := BFILETOLIST("b002046.txt") : L002025 := BFILETOLIST("b002025.txt") : A066539 := proc(n) global L002046,L002025; op(n,L002046)-op(n,L002025) ; end:
    A162884 := proc(n) A066539(n)/2 ; end: seq(A162884(n),n=1..100) ; # R. J. Mathar, Jul 19 2009
  • Mathematica
    With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Differences, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]/2] (* Michael De Vlieger, Oct 26 2017 *)

Formula

a(n) = A066539(n)/2.
a(n) = (A259180(2n) - A259180(2n-1))/2. - Omar E. Pol, Oct 26 2017

Extensions

Terms resorted along with A066539 by R. J. Mathar, Jul 19 2009

A275315 Average of amicable pairs (x,y), ordered by the smaller value x given in A002025.

Original entry on oeis.org

252, 1197, 2772, 5292, 6300, 10800, 13440, 17856, 69552, 66960, 69120, 78624, 84240, 112320, 131040, 122760, 147420, 155520, 174096, 178560, 194400, 199584, 322812, 349272, 374976, 378000, 446400, 477603, 508896, 524160, 635040, 648000, 657720, 673920, 648000, 725760, 761400, 833280, 890568, 939600
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 22 2016

Keywords

Comments

Each term represents the midpoint of an interval (x,y), where x (A002025) and y (A002046) form a pair of amicable numbers (A259180). The length and radius of each interval can be found in A066539 and A162884, respectively.
This sequence is not monotonic (specifically, not nondecreasing), since x+y (A180164) is not monotonic. For a monotonic (nondecreasing) ordering of these averages, see A275316.
It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd). If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.

Examples

			a(  1) = (     220 +      284)/2 =      504/2 =      252.
a(  2) = (    1184 +     1210)/2 =     2394/2 =     1197.
a(  3) = (    2620 +     2924)/2 =     5544/2 =     2772.
...      ...                 ...          ...         ...
a(  9) = (   63020 +    76084)/2 =   139104/2 =    69552.
a( 10) = (   66928 +    66992)/2 =   133920/2 =    66960.
a( 11) = (   67095 +    71145)/2 =   138240/2 =    69120.
...      ...                 ...          ...         ...
a( 15) = (  122265 +   139815)/2 =   262080/2 =   131040.
a( 16) = (  122368 +   123152)/2 =   245520/2 =   122760.
a( 17) = (  141664 +   153176)/2 =   294840/2 =   147420.
...      ...                 ...          ...         ...
a( 32) = (  609928 +   686072)/2 =  1296000/2 =   648000.
...      ...                 ...          ...         ...
a( 35) = (  643336 +   652664)/2 =  1296000/2 =   648000.
...      ...                 ...          ...         ...
a(105) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
...      ...                 ...          ...         ...
a(109) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
...      ...                 ...          ...         ...
a(137) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
a(138) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
...      ...                 ...          ...         ...
		

Crossrefs

Formula

a(n) = [A002025(n) + A002046(n)]/2 = A180164(n)/2.

A275469 Difference between the larger and smaller terms of the n-th amicable pair (x,y) given in A259933.

Original entry on oeis.org

64, 26, 304, 544, 136, 112, 2310, 1120, 64, 4050, 13064, 18018, 8980, 23670, 784, 17550, 11512, 26420, 4480, 4576, 18064, 5720, 84544, 81304, 110852, 43184, 17888, 17150, 11680, 3510, 69296, 76144, 9328, 67072, 76592, 115592, 70592, 61110, 21712, 82768
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 28 2016

Keywords

Comments

Each term represents the length of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933). The midpoint and radius of each interval can be found in A275316 and A275470, respectively.
Each term will be even as long as there does not exist an amicable pair where x and y have opposite parity.
This sequence is a rearrangement of A066539 (which is based on A002025, A002046, and A259180). The first ten indices for which a(n) does not equal A066539(n) are n = 9, 10, 11, 15, 16, 33, 34, 35, 41, 42.

Examples

			a(1) = 284 - 220 = 64, a(2) = 1210 - 1184 = 26, and a(3) = 2924 - 2620 = 304.
		

Crossrefs

Formula

a(n) = A260087(n) - A260086(n).

A287026 List of pairs of amicable numbers (m, n) with record value of m/n.

Original entry on oeis.org

220, 284, 1184, 1210, 6232, 6368, 10744, 10856, 66928, 66992, 16137628, 16150628, 28118032, 28128368, 766292835, 766512285, 1930301618, 1930741582, 4000783984, 4001351168, 44303273584, 44307987968, 85617896265, 85625175735, 161899964416, 161905117184
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2017

Keywords

Comments

The 2 members in each pair are adjacent to each other in the sequence.
The pairs were found using Sergei Chernykh's Amicable pair list. There are 21 pairs with lesser member < 10^18.

Examples

			The ratios m/n are
                   220/284                 = 0.7746...
                  1184/1210                = 0.9785...
                  6232/6368                = 0.9786...
                 10744/10856               = 0.9896...
                 66928/66992               = 0.9990...
              16137628/16150628            = 0.9991...
              28118032/28128368            = 0.9996...
             766292835/766512285           = 0.99971...
            1930301618/1930741582          = 0.99977...
            4000783984/4001351168          = 0.99985...
           44303273584/44307987968         = 0.99989...
           85617896265/85625175735         = 0.99991...
          161899964416/161905117184        = 0.99996...
          456280713808/456281771312        = 0.999997...
        52326552030976/52326637800704      = 0.999998...
      1132213192149585/1132213862340015    = 0.9999994...
     27117998061385216/27118008762013184   = 0.99999960...
    226615161368838645/226615243086790155  = 0.99999963...
    286707053950093312/286707152546674688  = 0.99999965...
    692760387785689984/692760539319737216  = 0.99999978...
    794879833279366144/794879862664408064  = 0.99999996...
   5462337996254147968/5462338103823900032 = 0.99999998...
		

Crossrefs

Cf. A259180 (amicable pairs).

A347770 Conjectured list of numbers which are perfect, amicable, or sociable.

Original entry on oeis.org

6, 28, 220, 284, 496, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 8128, 10744, 10856, 12285, 12496, 14264, 14288, 14316, 14536, 14595, 15472, 17296, 17716, 18416, 19116, 19916, 22744, 22976, 31704, 45946, 47616, 48976, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750
Offset: 1

Views

Author

Eric Chen, Sep 13 2021

Keywords

Comments

By definition, this is the union of A000396, A259180, and A122726. However, at present A122726 is not known to be complete. There is no proof that 564 (for example) is missing from this sequence. - N. J. A. Sloane, Sep 17 2021
Numbers m for which there exists k>=1 such that s^k(m) = m, where s is A001065.
Conjecture: There are no aliquot cycles containing even numbers and odd numbers simultaneously, i.e., every aliquot cycle either has only even numbers or has only odd numbers.

Examples

			Known aliquot cycles (sorted by smallest member):
{6}
{28}
{220, 284}
{496}
{1184, 1210}
{2620, 2924}
{5020, 5564}
{6232, 6368}
{8128}
{10744, 10856}
{12285, 14595}
{12496, 14288, 15472, 14536, 14264}
{14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716}
{17296, 18416}
...
		

Crossrefs

Extensions

Edited with new definition (pointing out that the list is only conjectured to be complete) by N. J. A. Sloane, Sep 17 2021

A385718 Primes p such that there exists prime q < p such that sigma(q+1) = sigma(p+2) = p + q.

Original entry on oeis.org

367, 457, 691, 341647, 909091, 1803421, 2640571, 3076903, 3413191, 5228611, 6152383, 6541477, 6545197, 6695503, 10161133, 10770313, 15319693, 31128511, 31687069, 39946483, 52764031, 58886803, 104494483, 207855001, 283882153, 307912921, 309201751, 529570609, 574061053
Offset: 1

Views

Author

S. I. Dimitrov, Jul 07 2025

Keywords

Comments

The primes q and p form a P(1, 2)-amicable pair. See Dimitrov link.

Examples

			(179, 367) is such a pair because sigma(179+1) = sigma(367+2) = 179 + 367.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Jul 07 2025

A018339 Divisors of 220.

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220
Offset: 1

Views

Author

Keywords

Comments

This number has twelve divisors that add up to 504, and 504 - 220 = 284, so 220 is an abundant number. In turn, 284 is a deficient number with six divisors (see A018373) which also add up to 504, and 504 - 284 = 220. - Alonso del Arte, Oct 22 2017

Crossrefs

Programs

A018373 Divisors of 284.

Original entry on oeis.org

1, 2, 4, 71, 142, 284
Offset: 1

Views

Author

Keywords

Comments

This number has six divisors that add up to 504, and 504 - 284 = 220, so 284 is a deficient number. In turn, 220 is an abundant number with twelve divisors (see A018339) which also add up to 504, and 504 - 220 = 284. - Alonso del Arte, Oct 22 2017

Crossrefs

Programs

A180163 Products of pairs of amicable numbers (see A063990).

Original entry on oeis.org

62480, 1432640, 7660880, 27931280, 39685376, 116636864, 179299575, 318523136, 4217802560, 4494828240, 4952759175, 6067699000, 7775676090, 12285798525, 15069863936, 17358731325, 20160203840, 25845386480, 30293400832
Offset: 1

Views

Author

Jonathan Vos Post, Aug 14 2010

Keywords

Comments

For a more reasonable sequence, in which both factors always belong to the same amicable pair, see A180202, which first differs from this sequence at a(9). - Omar E. Pol, Oct 25 2017

Examples

			a(1) = 220 * 284 = 62480 = 2^4 * 5 * 11 * 71.
a(2) = 1184 * 1210 = 1432640 = 2^6 * 5 * 11^2 * 37.
		

Crossrefs

Formula

a(n) = A063990(2*n-1) * A063990(2*n).

A262624 Even amicable numbers.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 17296, 18416, 63020, 66928, 66992, 76084, 79750, 88730, 122368, 123152, 141664, 142310, 153176, 168730, 171856, 176272, 176336, 180848, 185368, 196724, 202444, 203432, 280540, 308620, 319550, 356408, 365084, 389924, 399592, 430402, 437456, 455344
Offset: 1

Views

Author

Omar E. Pol, Oct 02 2015

Keywords

Comments

Even numbers that are also amicable numbers.
Intersection of A005843 and A063990.
The first time a pair (x, y) of even amicable numbers ordered by its first element is not adjacent is x = 63020, y = 76084 which correspond to a(15) and a(18), respectively.

Crossrefs

Programs

  • PARI
    t(n)=sigma(n)-n;
    is(n)={local(a); a=t(n); a<>n && t(a)==n};
    for(n=1, 1e6, if( n%2 == 0 && is(n), print1(n", "))) \\ Altug Alkan, Oct 16 2015
Previous Showing 31-40 of 68 results. Next