A162884
Half the difference between the larger and smaller term of the n-th amicable pair.
Original entry on oeis.org
32, 13, 152, 272, 68, 56, 1155, 560, 6532, 32, 2025, 9009, 4490, 11835, 8775, 392, 5756, 13210, 2240, 2288, 9032, 2860, 42272, 40652, 55426, 21592, 8944, 8575, 5840, 1755, 34648, 38072, 33536, 38296, 4664, 57796, 35296, 30555, 10856, 41384, 88965, 22496
Offset: 1
a(7)=1155 because the 7th pair of amicable numbers is 12285 and 14595; and (14595-12285)/2=1155.
-
read("transforms3") ; L002046 := BFILETOLIST("b002046.txt") : L002025 := BFILETOLIST("b002025.txt") : A066539 := proc(n) global L002046,L002025; op(n,L002046)-op(n,L002025) ; end:
A162884 := proc(n) A066539(n)/2 ; end: seq(A162884(n),n=1..100) ; # R. J. Mathar, Jul 19 2009
-
With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Differences, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]/2] (* Michael De Vlieger, Oct 26 2017 *)
A275315
Average of amicable pairs (x,y), ordered by the smaller value x given in A002025.
Original entry on oeis.org
252, 1197, 2772, 5292, 6300, 10800, 13440, 17856, 69552, 66960, 69120, 78624, 84240, 112320, 131040, 122760, 147420, 155520, 174096, 178560, 194400, 199584, 322812, 349272, 374976, 378000, 446400, 477603, 508896, 524160, 635040, 648000, 657720, 673920, 648000, 725760, 761400, 833280, 890568, 939600
Offset: 1
a( 1) = ( 220 + 284)/2 = 504/2 = 252.
a( 2) = ( 1184 + 1210)/2 = 2394/2 = 1197.
a( 3) = ( 2620 + 2924)/2 = 5544/2 = 2772.
... ... ... ... ...
a( 9) = ( 63020 + 76084)/2 = 139104/2 = 69552.
a( 10) = ( 66928 + 66992)/2 = 133920/2 = 66960.
a( 11) = ( 67095 + 71145)/2 = 138240/2 = 69120.
... ... ... ... ...
a( 15) = ( 122265 + 139815)/2 = 262080/2 = 131040.
a( 16) = ( 122368 + 123152)/2 = 245520/2 = 122760.
a( 17) = ( 141664 + 153176)/2 = 294840/2 = 147420.
... ... ... ... ...
a( 32) = ( 609928 + 686072)/2 = 1296000/2 = 648000.
... ... ... ... ...
a( 35) = ( 643336 + 652664)/2 = 1296000/2 = 648000.
... ... ... ... ...
a(105) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
... ... ... ... ...
a(109) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
... ... ... ... ...
a(137) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
a(138) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
... ... ... ... ...
A275469
Difference between the larger and smaller terms of the n-th amicable pair (x,y) given in A259933.
Original entry on oeis.org
64, 26, 304, 544, 136, 112, 2310, 1120, 64, 4050, 13064, 18018, 8980, 23670, 784, 17550, 11512, 26420, 4480, 4576, 18064, 5720, 84544, 81304, 110852, 43184, 17888, 17150, 11680, 3510, 69296, 76144, 9328, 67072, 76592, 115592, 70592, 61110, 21712, 82768
Offset: 1
a(1) = 284 - 220 = 64, a(2) = 1210 - 1184 = 26, and a(3) = 2924 - 2620 = 304.
A287026
List of pairs of amicable numbers (m, n) with record value of m/n.
Original entry on oeis.org
220, 284, 1184, 1210, 6232, 6368, 10744, 10856, 66928, 66992, 16137628, 16150628, 28118032, 28128368, 766292835, 766512285, 1930301618, 1930741582, 4000783984, 4001351168, 44303273584, 44307987968, 85617896265, 85625175735, 161899964416, 161905117184
Offset: 1
The ratios m/n are
220/284 = 0.7746...
1184/1210 = 0.9785...
6232/6368 = 0.9786...
10744/10856 = 0.9896...
66928/66992 = 0.9990...
16137628/16150628 = 0.9991...
28118032/28128368 = 0.9996...
766292835/766512285 = 0.99971...
1930301618/1930741582 = 0.99977...
4000783984/4001351168 = 0.99985...
44303273584/44307987968 = 0.99989...
85617896265/85625175735 = 0.99991...
161899964416/161905117184 = 0.99996...
456280713808/456281771312 = 0.999997...
52326552030976/52326637800704 = 0.999998...
1132213192149585/1132213862340015 = 0.9999994...
27117998061385216/27118008762013184 = 0.99999960...
226615161368838645/226615243086790155 = 0.99999963...
286707053950093312/286707152546674688 = 0.99999965...
692760387785689984/692760539319737216 = 0.99999978...
794879833279366144/794879862664408064 = 0.99999996...
5462337996254147968/5462338103823900032 = 0.99999998...
A347770
Conjectured list of numbers which are perfect, amicable, or sociable.
Original entry on oeis.org
6, 28, 220, 284, 496, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 8128, 10744, 10856, 12285, 12496, 14264, 14288, 14316, 14536, 14595, 15472, 17296, 17716, 18416, 19116, 19916, 22744, 22976, 31704, 45946, 47616, 48976, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750
Offset: 1
Known aliquot cycles (sorted by smallest member):
{6}
{28}
{220, 284}
{496}
{1184, 1210}
{2620, 2924}
{5020, 5564}
{6232, 6368}
{8128}
{10744, 10856}
{12285, 14595}
{12496, 14288, 15472, 14536, 14264}
{14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716}
{17296, 18416}
...
- David Moews, A list of amicable pairs below 2.01 * 10^11
- David Moews, A list of the first 5001 amicable pairs
- David Moews, A list of currently known aliquot cycles of length greater than 2 [This list is not known to be complete.]
- Jan Munch Pedersen, Tables of Aliquot Cycles (from wayback machine)
- Eric Weisstein's World of Mathematics, Perfect number
- Eric Weisstein's World of Mathematics, Amicable Pair
- Eric Weisstein's World of Mathematics, Sociable Numbers
- Wikipedia, Perfect number
- Wikipedia, Amicable number
- Wikipedia, Sociable number
Edited with new definition (pointing out that the list is only conjectured to be complete) by
N. J. A. Sloane, Sep 17 2021
A385718
Primes p such that there exists prime q < p such that sigma(q+1) = sigma(p+2) = p + q.
Original entry on oeis.org
367, 457, 691, 341647, 909091, 1803421, 2640571, 3076903, 3413191, 5228611, 6152383, 6541477, 6545197, 6695503, 10161133, 10770313, 15319693, 31128511, 31687069, 39946483, 52764031, 58886803, 104494483, 207855001, 283882153, 307912921, 309201751, 529570609, 574061053
Offset: 1
(179, 367) is such a pair because sigma(179+1) = sigma(367+2) = 179 + 367.
A018339
Divisors of 220.
Original entry on oeis.org
1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220
Offset: 1
A018373
Divisors of 284.
Original entry on oeis.org
1, 2, 4, 71, 142, 284
Offset: 1
A180163
Products of pairs of amicable numbers (see A063990).
Original entry on oeis.org
62480, 1432640, 7660880, 27931280, 39685376, 116636864, 179299575, 318523136, 4217802560, 4494828240, 4952759175, 6067699000, 7775676090, 12285798525, 15069863936, 17358731325, 20160203840, 25845386480, 30293400832
Offset: 1
a(1) = 220 * 284 = 62480 = 2^4 * 5 * 11 * 71.
a(2) = 1184 * 1210 = 1432640 = 2^6 * 5 * 11^2 * 37.
A262624
Even amicable numbers.
Original entry on oeis.org
220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 17296, 18416, 63020, 66928, 66992, 76084, 79750, 88730, 122368, 123152, 141664, 142310, 153176, 168730, 171856, 176272, 176336, 180848, 185368, 196724, 202444, 203432, 280540, 308620, 319550, 356408, 365084, 389924, 399592, 430402, 437456, 455344
Offset: 1
-
t(n)=sigma(n)-n;
is(n)={local(a); a=t(n); a<>n && t(a)==n};
for(n=1, 1e6, if( n%2 == 0 && is(n), print1(n", "))) \\ Altug Alkan, Oct 16 2015
Comments