2, 3, 4, 6, 9, 10, 16, 40, 104, 8840
Offset: 1
A260851
a(n) in base n is the concatenation of the base n expansions of (1, 2, 3, ..., n-1, n, n-1, ..., 3, 2, 1).
Original entry on oeis.org
1, 13, 439, 27961, 3034961, 522134761, 131870760799, 45954960939217, 21107054541321649, 12345678910987654321, 8954302429379707945271, 7883984846509322664831433, 8281481197999449959084458465, 10228838696316240496325238416281, 14674825961700306151086890240104831
Offset: 1
a(1) = 1 is the "concatenation" of (1) which is the unary representation of 1, cf A000042.
a(2) = 13 = 1101[2] = concatenation of (1, 10, 1), where 10 is the base 2 representation of 2.
a(3) = 439 = 121021[3] = concatenation of (1, 2, 10, 2, 1), where 10 is the base 3 representation of 3.
a(10) = 12345678910987654321 is the concatenation of (1, 2, 3, ..., 9, 10, 9, 8, ..., 2, 1); it is also a prime.
-
[1] cat [((n^n-1)/(n-1) - n + 1)*(1 + n*(n^n-1)/(n-1)) - 1: n in [2..15]]; // Vincenzo Librandi, Aug 02 2015
-
f:=proc(b) local i;
add((i+1)*b^i, i=0..b-2) + b^b + add(i*b^(2*b-i),i=1..b-1); end;
[seq(f(b),b=1..25)]; # N. J. A. Sloane, Sep 26 2015
-
Join[{1}, Table[((n^n - 1)/(n - 1) - n + 1) (1 + n (n^n - 1)/(n - 1)) - 1, {n, 2, 30}]] (* Vincenzo Librandi, Aug 02 2015 *)
-
A260851(n)=(1+n*r=if(n>2,n^n\(n-1),n*2-1))*(r-n+1)-1
-
def A260851(n): return sum(i*(n**(2*n-i)+n**(i-1)) for i in range(1, n)) + n**n # Ya-Ping Lu, Dec 23 2021
A260871
Primes whose base-b representation is the concatenation of the base-b representations of (1, 2, ..., k, k-1, ..., 1), for some b > 1 and some k > 1.
Original entry on oeis.org
13, 439, 7069, 27961, 2864599, 522134761, 21107054541321649, 12345678910987654321, 1919434248892467772593071038679, 24197857203266734883076090685781525281, 1457624695486449811479514346937750581569993, 1263023202979901596155544853826881857760357011832664659152364441
Offset: 1
The first two terms are of the form A[b](b) with b=2 and b=3:
a(1) = 13 = 1101_2 = concat(1, 2=10_2, 1).
a(2) = 439 = 121021_3 = concat(1, 2, 3=10_3, 2, 1).
See comments for further examples.
- David Broadhurst, Conjectured list of initial 434 terms (The notation is that [15, [25, 29], 91] means that a(15) is A[25](29) with 91 decimal digits and [237, [895, 1289], 9933] means that a(237) is probably A[895](1289) with 9933 decimal digits.)
The sequences A[b] are listed in
A173427 for b=2,
A260853 for b=3,
A260854 for b=4,
A260855 for b=5,
A260856 for b=6,
A260857 for b=7,
A260858 for b=8,
A260859 for b=9,
A173426 for b=10,
A260861 for b=11,
A260862 for b=12,
A260863 for b=13,
A260864 for b=14,
A260865 for b=15,
A260866 for b=16,
A260860 for b=60.
-
{L=1e99;A260871=List();for(b=2,9e9,for(n=b,9e9,if(Lb)));ispseudoprime(p)&&listput(A260871,p)));vecsort(A260871)}
A260859
Base-9 representation of a(n) is the concatenation of the base-9 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 100, 8281, 672400, 54479161, 4412944900, 357449732641, 28953439105600, 21107054541321649, 138483384602892402628, 908589486379899193778809, 5961255620138564686107812272, 39111798123729126657669459066697, 256612507489786800304910707633347364
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 100 = (9+1)^2 = 9^2 + 2*9 + 1 = 121_9, concatenation of (1, 2, 1).
a(10) = 1234567810111087654321_9 is the concatenation of (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 10, 8, 7, 6, 5, 4, 3, 2, 1), where the middle "10, 11, 10" are the base-9 representations of 9, 10, 9.
-
a(n,b=9)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A261171
Value of k for which A260871(n) = A[b](k), with b = A261172(n); A[b](k) = the number whose base-b representation is the concatenation of the base-b representations of (1, ..., k, k-1, ..., 1).
Original entry on oeis.org
2, 3, 4, 4, 5, 6, 9, 10, 13, 16, 16, 21, 23, 23, 29, 28, 38, 39, 33, 34, 41, 40, 37, 37, 41, 42, 44, 64, 77, 82, 75, 83, 83, 87, 104, 104, 86, 94
Offset: 1
A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 4.
-
A261171_list(LIM=1e499)={my(A=List(),p,d);for(b=2,9e9,for(n=b,9e9,if(LIMb)));ispseudoprime(p)&&listput(A,[log(p),n])));apply(t->t[2],vecsort(A))}
A261172
Value of b for which A260871(n) = A[b](k), with k = A261171(n); A[b](k) = the number whose base-b representation is the concatenation of the base-b representations of (1, ..., k, k-1, ..., 1).
Original entry on oeis.org
2, 3, 2, 4, 3, 6, 9, 10, 11, 16, 12, 14, 22, 18, 25, 20, 2, 6, 18, 14, 7, 40, 31, 25, 23, 20, 22, 62, 65, 68, 29, 23, 38, 26, 104, 6, 34, 52
Offset: 1
A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 2.
-
A261172_list(LIM=1e499)={my(A=List(),p,d);for(b=2,9e9,for(n=b,9e9,if(LIMb)));ispseudoprime(p)&&listput(A,[log(p),n])));apply(t->t[2],vecsort(A))}
A260854
Base-4 representation of a(n) is the concatenation of the base-4 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 25, 441, 27961, 7148857, 1830131001, 468514084153, 119939614479673, 30704541449950521, 7860362613477971257, 2012252829087011018041, 515136724246861226808633, 131875001407205856562222393, 33760000360244849399916500281, 8642560092222683848298425324857
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 25 = 16 + 2*4 + 1 = 121_4 is the concatenation of (1, 2, 1).
a(4) = 27961 = 12310321_4 is the concatenation of (1, 2, 3, 10, 3, 2, 1), where the middle "10" is the base-4 representation of 4.
-
a(n,b=4)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A260855
Base-5 representation of a(n) is the concatenation of the base-5 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 36, 961, 24336, 3034961, 1896581836, 1185364159961, 740852620019336, 463032888020409961, 289395555025471581836, 180872221891237629784961, 113045138682031465901269336, 70653211676269864870442284961, 44158257297668670511080159081836
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 36 = (5+1)^2 = 5^2 + 2*5 + 1 = 121_4 is the concatenation of (1, 2, 1).
a(5) = 3034961 = 1234104321_5 is the concatenation of (1, 2, 3, 4, 10, 4, 3, 2, 1), where the middle "10" is the base-5 representation of 5.
-
a(n,b=5)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A260857
Base-7 representation of a(n) is the concatenation of the base-7 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 64, 3249, 160000, 7845601, 384473664, 131870760799, 316621469105950, 760208147660763999, 1825259762561514314050, 4382448689911580334132199, 10522259304477772232578647150, 25263944590051134455098854865399, 60658730960712773989601560650105250
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 64 = (7+1)^2 = 7^2 + 2*7 + 1 = 121_7 is the concatenation of (1, 2, 1).
a(8) = 316621469105950 = 123456101110654321_7 is the concatenation of (1, 2, 3, 4, 5, 6, 10, 11, 10, 6, 5, 4, 3, 2, 1), where the middle "10, 11, 10" are the base-7 representations of 7, 8, 7.
-
Table[FromDigits[Flatten[Join[IntegerDigits[Range[n],7], IntegerDigits[ Range[ n-1,1,-1],7]]],7],{n,0,20}] (* Harvey P. Dale, Nov 02 2017 *)
-
a(n,b=7)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
Comments