cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A305999 Number of unlabeled spanning intersecting set-systems on n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 6, 76, 12916
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge. A singleton is an edge containing only one vertex.

Examples

			Non-isomorphic representative of the a(3) = 6 set-systems:
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A306001(n) - A306001(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019

A320355 Number of connected antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 3, 4, 8, 9, 19, 24, 45, 71, 118, 194, 335
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 9 clutters:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{1},{1}}  {{1,1,2}}          {{1,1,3}}
                                   {{2},{2}}          {{1,2,2}}
                                   {{1,1,1,1}}        {{1,1,1,2}}
                                   {{1,1},{1,1}}      {{1,1,1,1,1}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[Length[csm[#]]==1,antiQ[#]]&]],{n,8}]

A320356 Number of strict connected antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 22, 35, 62, 98, 171, 277
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(6) = 13 clutters:
  {{1}}  {{2}}    {{3}}      {{4}}        {{5}}          {{6}}
         {{1,1}}  {{1,2}}    {{1,3}}      {{1,4}}        {{1,5}}
                  {{1,1,1}}  {{2,2}}      {{2,3}}        {{2,4}}
                             {{1,1,2}}    {{1,1,3}}      {{3,3}}
                             {{1,1,1,1}}  {{1,2,2}}      {{1,1,4}}
                                          {{1,1,1,2}}    {{1,2,3}}
                                          {{1,1,1,1,1}}  {{2,2,2}}
                                          {{1,1},{1,2}}  {{1,1,1,3}}
                                                         {{1,1,2,2}}
                                                         {{1,1,1,1,2}}
                                                         {{1,1},{1,3}}
                                                         {{1,1,1,1,1,1}}
                                                         {{1,2},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}]

A327358 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 3, 2, 0, 20, 14, 10, 6, 0, 180, 157, 128, 91, 54, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
If empty edges are allowed, we have T(0,0) = 2.

Examples

			Triangle begins:
    1
    1   0
    2   1   0
    5   3   2   0
   20  14  10   6   0
  180 157 128  91  54   0
Non-isomorphic representatives of the antichains counted in row n = 4:
  {1234}          {1234}           {1234}           {1234}
  {1}{234}        {12}{134}        {123}{124}       {12}{134}{234}
  {12}{34}        {123}{124}       {12}{13}{234}    {123}{124}{134}
  {12}{134}       {12}{13}{14}     {12}{134}{234}   {12}{13}{14}{234}
  {123}{124}      {12}{13}{24}     {123}{124}{134}  {123}{124}{134}{234}
  {1}{2}{34}      {12}{13}{234}    {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
  {2}{13}{14}     {12}{134}{234}   {12}{13}{14}{234}
  {12}{13}{14}    {123}{124}{134}  {12}{13}{14}{23}{24}
  {12}{13}{24}    {12}{13}{14}{23} {123}{124}{134}{234}
  {1}{2}{3}{4}    {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
  {12}{13}{234}   {12}{13}{14}{234}
  {12}{134}{234}  {12}{13}{14}{23}{24}
  {123}{124}{134} {123}{124}{134}{234}
  {4}{12}{13}{23} {12}{13}{14}{23}{24}{34}
  {12}{13}{14}{23}
  {12}{13}{24}{34}
  {12}{13}{14}{234}
  {12}{13}{14}{23}{24}
  {123}{124}{134}{234}
  {12}{13}{14}{23}{24}{34}
		

Crossrefs

Column k = 0 is A261005, or A006602 if empty edges are allowed.
Column k = 1 is A261006 (clutters), if we assume A261006(0) = A261006(1) = 0.
Column k = 2 is A305028 (blobs), if we assume A305028(0) = A305028(2) = 0.
Column k = n - 1 is A327425 (cointersecting).
The labeled version is A327350.
Negated first differences of rows are A327359.

A317080 Number of unlabeled connected antichains of multisets with multiset-join a multiset of size n.

Original entry on oeis.org

1, 1, 2, 6, 34, 392
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			Non-isomorphic representatives of the a(3) = 6 connected antichains of multisets:
  (111),
  (122), (12)(22),
  (123), (13)(23), (12)(13)(23).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sysnorm[m_]:=First[Sort[sysnorm[m,1]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    cuu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],And[multijoin@@#==m,Length[csm[#]]==1]&];
    Table[Length[Union[sysnorm/@Join@@Table[cuu[m],{m,strnorm[n]}]]],{n,5}]

A327437 Number of unlabeled antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 3, 6, 15, 52, 410, 32697
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 antichains:
  {}  {}         {}             {}
      {{1}}      {{1}}          {{1}}
      {{1},{2}}  {{1,2}}        {{1,2}}
                 {{1},{2}}      {{1},{2}}
                 {{1},{2,3}}    {{1,2,3}}
                 {{1},{2},{3}}  {{1},{2,3}}
                                {{1,2},{1,3}}
                                {{1},{2},{3}}
                                {{1},{2,3,4}}
                                {{1,2},{3,4}}
                                {{1},{2},{3,4}}
                                {{1},{2},{3},{4}}
                                {{2},{1,3},{1,4}}
                                {{1,2},{1,3},{2,3}}
                                {{4},{1,2},{1,3},{2,3}}
		

Crossrefs

Column k = 0 of A327438.
The labeled version is A327355.
The covering case is A327426.

Formula

a(n > 0) = A306505(n) - A261006(n).

A317079 Number of unlabeled antichains of multisets with multiset-join a multiset of size n.

Original entry on oeis.org

1, 1, 3, 9, 46, 450
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

An antichain of multisets is a finite set of finite nonempty multisets, none of which is a submultiset of any other. The multiset-join of a multiset system has the same vertices with multiplicities equal to the maxima of the multiplicities in the edges.

Examples

			Non-isomorphic representatives of the a(3) = 9 antichains of multisets:
  (111),
  (122), (1)(22), (12)(22),
  (123), (1)(23), (13)(23), (1)(2)(3), (12)(13)(23).
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    auu[m_]:=Select[stableSets[Union[Rest[Subsets[m]]],submultisetQ],multijoin@@#==m&];
    sysnorm[m_]:=First[Sort[sysnorm[m,1]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Join@@Table[auu[m],{m,strnorm[n]}]]],{n,5}]

A320351 Number of connected multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 11, 18, 38, 66, 130, 237, 449, 823, 1538
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 18 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{1,1}}    {{1,1,2}}          {{1,1,3}}
                    {{1},{1},{1}}  {{2},{2}}          {{1,2,2}}
                                   {{1,1,1,1}}        {{1,1,1,2}}
                                   {{1},{1,2}}        {{1},{1,3}}
                                   {{1},{1,1,1}}      {{2},{1,2}}
                                   {{1,1},{1,1}}      {{1,1,1,1,1}}
                                   {{1},{1},{1,1}}    {{1},{1,1,2}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1,1,1,1}}
                                                      {{1,1},{1,1,1}}
                                                      {{1},{1},{1,2}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],Length[csm[#]]==1&]],{n,8}]

A305855 Number of unlabeled spanning intersecting antichains on n vertices.

Original entry on oeis.org

1, 1, 1, 3, 9, 72, 3441, 47170585
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. S is spanning if every vertex is contained in some edge.

Examples

			Non-isomorphic representatives of the a(4) = 9 spanning intersecting antichains:
  {{1,2,3,4}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Formula

a(n) = A305857(n) - A305857(n-1) for n > 0. - Andrew Howroyd, Aug 13 2019

Extensions

a(6) from Andrew Howroyd, Aug 13 2019
a(7) from Brendan McKay, May 11 2020

A305856 Number of unlabeled intersecting set-systems on up to n vertices.

Original entry on oeis.org

1, 2, 4, 14, 124, 14992, 1289845584
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection.

Examples

			Non-isomorphic representatives of the a(3) = 14 intersecting set-systems:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{2},{1,2}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{3},{1,3},{2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Extensions

a(5) from Andrew Howroyd, Aug 12 2019
a(6) from Bert Dobbelaere, Apr 28 2025
Previous Showing 11-20 of 25 results. Next