A358907
Number of finite sequences of distinct integer compositions with total sum n.
Original entry on oeis.org
1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0
The a(1) = 1 through a(4) = 18 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((21)) ((22))
((111)) ((31))
((1)(2)) ((112))
((2)(1)) ((121))
((1)(11)) ((211))
((11)(1)) ((1111))
((1)(3))
((3)(1))
((1)(12))
((11)(2))
((1)(21))
((12)(1))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the strict case of
A133494.
The version for sequences of partitions is
A358906.
A001970 counts multiset partitions of integer partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000009,
A000041,
A000219,
A055887,
A075900,
A296122,
A304961,
A307068,
A336342,
A358836,
A358912.
-
g:= proc(n) option remember; ceil(2^(n-1)) end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Dec 15 2022
-
comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]
A387115
Number of ways to choose a sequence of distinct strict integer partitions, one of each prime index of n.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 2, 0, 0, 2, 3, 0, 4, 2, 2, 0, 5, 0, 6, 0, 2, 3, 8, 0, 2, 4, 0, 0, 10, 2, 12, 0, 3, 5, 4, 0, 15, 6, 4, 0, 18, 2, 22, 0, 0, 8, 27, 0, 2, 2, 5, 0, 32, 0, 6, 0, 6, 10, 38, 0, 46, 12, 0, 0, 8, 3, 54, 0, 8, 4, 64, 0, 76, 15, 2, 0, 6, 4, 89, 0, 0
Offset: 1
The prime indices of 15 are (2,3), and there are a(15) = 2 choices:
((2),(3))
((2),(2,1))
The prime indices of 121 are (5,5), and there are a(121) = 6 choices:
((5),(4,1))
((5),(3,2))
((4,1),(5))
((4,1),(3,2))
((3,2),(5))
((3,2),(4,1))
Twice-partitions of this type are counted by
A358914, strict case of
A270995.
Allowing non-strict partitions gives
A387110, for prime factors
A387133.
For initial intervals instead of strict partitions we have
A387111.
For constant instead of strict partitions we have
A387120.
Positions of 0 are
A387176 (non-choosable), complement
A387177 (choosable).
A003963 multiplies together the prime indices of n.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]],UnsameQ@@#&]],{n,100}]
A320331
Number of strict T_0 multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 30, 61, 110, 207, 381, 711, 1250
Offset: 0
The a(1) = 1 through a(5) = 17 multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,1,1}} {{2,2}} {{1,1,3}}
{{1},{2}} {{1,1,2}} {{1,2,2}}
{{1},{1,1}} {{1},{3}} {{1},{4}}
{{1,1,1,1}} {{2},{3}}
{{1},{1,2}} {{1,1,1,2}}
{{2},{1,1}} {{1},{1,3}}
{{1},{1,1,1}} {{1},{2,2}}
{{2},{1,2}}
{{3},{1,1}}
{{1,1,1,1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
{{1},{2},{1,1}}
Cf.
A001970,
A047968,
A050342,
A089259,
A141268,
A261049,
A289501,
A305551,
A319066,
A319312,
A320328,
A320330.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,UnsameQ@@dual[#]]&]],{n,8}]
A320353
Number of antichains of multisets whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 1, 3, 5, 11, 17, 36, 56, 107, 175, 311, 505, 887
Offset: 0
The a(1) = 1 through a(5) = 17 antichains:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1},{1}} {{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1},{1}} {{1},{3}} {{1,2,2}}
{{2},{2}} {{1},{4}}
{{1,1,1,1}} {{2},{3}}
{{2},{1,1}} {{1,1,1,2}}
{{1,1},{1,1}} {{1},{2,2}}
{{1},{1},{2}} {{3},{1,1}}
{{1},{1},{1},{1}} {{1,1,1,1,1}}
{{1,1},{1,2}}
{{1},{1},{3}}
{{1},{2},{2}}
{{2},{1,1,1}}
{{1},{1},{1},{2}}
{{1},{1},{1},{1},{1}}
Cf.
A001970,
A006126,
A050342,
A089259,
A258466,
A261005,
A261049,
A293994,
A319719,
A319721,
A320328,
A320355,
A320356.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
Table[Length[Select[Join@@mps/@IntegerPartitions[n],antiQ]],{n,8}]
A360742
Number T(n,k) of sets of nonempty integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 2, 0, 1, 4, 6, 5, 3, 0, 1, 5, 10, 10, 7, 4, 0, 1, 6, 14, 19, 16, 10, 5, 0, 1, 7, 19, 30, 32, 24, 14, 6, 0, 1, 8, 26, 46, 57, 52, 35, 19, 8, 0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10, 0, 1, 10, 40, 93, 147, 172, 157, 117, 69, 33, 12
Offset: 0
T(6,3) = 10: {[1,1,4]}, {[1,2,3]}, {[2,2,2]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[2],[2,2]}, {[3],[1,2]}, {[4],[1,1]}, {[1],[2],[3]}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 2;
0, 1, 3, 3, 2;
0, 1, 4, 6, 5, 3;
0, 1, 5, 10, 10, 7, 4;
0, 1, 6, 14, 19, 16, 10, 5;
0, 1, 7, 19, 30, 32, 24, 14, 6;
0, 1, 8, 26, 46, 57, 52, 35, 19, 8;
0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10;
...
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i), k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..12);
-
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i]]]]];
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[ g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i], k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 15 2023, after Alois P. Heinz *)
A320451
Number of multiset partitions of uniform integer partitions of n in which all parts have the same length.
Original entry on oeis.org
1, 1, 3, 5, 8, 7, 19, 11, 24, 26, 38, 28, 85, 46, 89, 99, 146, 110, 246, 163, 326, 305, 416, 376, 816, 591, 903, 971, 1450, 1295, 2517, 1916, 3045, 3141, 4042, 4117, 7073, 5736, 8131, 9026, 12658, 11514, 19459, 16230, 24638, 27129, 33747, 32279, 55778, 45761, 71946
Offset: 0
The a(9) = 26 multiset partitions:
{{9}}
{{1,8}}
{{2,7}}
{{3,6}}
{{4,5}}
{{1,2,6}}
{{1,3,5}}
{{1},{8}}
{{2,3,4}}
{{2},{7}}
{{3,3,3}}
{{3},{6}}
{{4},{5}}
{{1},{2},{6}}
{{1},{3},{5}}
{{2},{3},{4}}
{{3},{3},{3}}
{{1,1,1,2,2,2}}
{{1,1,1},{2,2,2}}
{{1,1,2},{1,2,2}}
{{1,1},{1,2},{2,2}}
{{1,2},{1,2},{1,2}}
{{1,1,1,1,1,1,1,1,1}}
{{1,1,1},{1,1,1},{1,1,1}}
{{1},{1},{1},{2},{2},{2}}
{{1},{1},{1},{1},{1},{1},{1},{1},{1}}
Cf.
A001970,
A047966,
A047968,
A050342,
A089259,
A258466,
A261049,
A305551,
A319056,
A319066,
A320328,
A320330,
A320331.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[SameQ@@Length/@Split[Sort[Join@@#]],SameQ@@Length/@#]&]],{n,10}]
A323531
Number of square multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 5, 9, 12, 18, 24, 36, 48, 69, 97, 139, 196, 283, 402, 576, 819, 1161, 1635, 2301, 3209, 4469, 6193, 8571, 11812, 16291, 22404, 30850, 42414, 58393, 80305, 110578, 152091, 209308, 287686, 395352, 542413, 743603, 1017489, 1390510, 1896482
Offset: 0
The a(3) = 1 through a(9) = 12 square multiset partitions:
(3) (4) (5) (6) (7) (8) (9)
(11)(11) (21)(11) (21)(21) (22)(21) (22)(22) (32)(22)
(22)(11) (31)(21) (31)(22) (32)(31)
(31)(11) (32)(11) (31)(31) (33)(21)
(41)(11) (32)(21) (41)(22)
(33)(11) (41)(31)
(41)(21) (42)(21)
(42)(11) (43)(11)
(51)(11) (51)(21)
(52)(11)
(61)(11)
(111)(111)(111)
-
Table[Sum[Length[Union@@(Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@#]]&/@IntegerPartitions[n,{k}])],{k,Sqrt[n]}],{n,30}]
A387137
Number of integer partitions of n whose parts do not have choosable sets of strict integer partitions.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 6, 9, 14, 20, 29, 39, 56, 74, 101, 134, 178, 232, 305, 392, 508, 646, 825, 1042, 1317, 1649, 2066, 2567, 3190, 3937, 4859, 5960, 7306, 8914, 10863, 13183, 15984, 19304, 23288, 28003, 33631, 40272, 48166, 57453, 68448, 81352, 96568, 114383
Offset: 0
The a(2) = 1 through a(8) = 14 partitions:
(11) (111) (22) (221) (222) (322) (422)
(211) (311) (411) (511) (611)
(1111) (2111) (2211) (2221) (2222)
(11111) (3111) (3211) (3221)
(21111) (4111) (3311)
(111111) (22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Twice-partitions of this type (into distinct strict partitions) are counted by
A358914.
For divisors instead of strict partitions we have
A370320, ranks
A355740.
For prime factors instead of strict partitions we have
A370593, ranks
A355529.
For initial intervals instead of strict partitions we have
A387118, ranks
A387113.
For all partitions instead of strict partitions we have
A387134, ranks
A387577.
These partitions are ranked by
A387176.
Cf.
A005703,
A052335,
A261049,
A270995,
A276078,
A335448,
A355535,
A367867,
A367901,
A367905,
A383706,
A387115.
-
strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[strptns/@#],UnsameQ@@#&]]==0&]],{n,0,15}]
A387133
Number of ways to choose a sequence of distinct integer partitions, one of each prime factor of n (with multiplicity).
Original entry on oeis.org
1, 2, 3, 2, 7, 6, 15, 0, 6, 14, 56, 6, 101, 30, 21, 0, 297, 12, 490, 14, 45, 112, 1255, 0, 42, 202, 6, 30, 4565, 42, 6842, 0, 168, 594, 105, 12, 21637, 980, 303, 0, 44583, 90, 63261, 112, 42, 2510, 124754, 0, 210, 84, 891, 202, 329931, 12, 392, 0, 1470, 9130
Offset: 1
The prime factors of 9 are (3,3), and the a(9) = 6 choices are:
((3),(2,1))
((3),(1,1,1))
((2,1),(3))
((2,1),(1,1,1))
((1,1,1),(3))
((1,1,1),(2,1))
Twice partitions of this type are counted by
A296122.
For strict partitions and prime indices we have
A387115.
For constant partitions and prime indices we have
A387120.
A003963 multiplies together prime indices.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
-
Table[Length[Select[Tuples[IntegerPartitions/@Flatten[ConstantArray@@@FactorInteger[n]]],UnsameQ@@#&]],{n,30}]
A387176
Numbers whose prime indices do not have choosable sets of strict integer partitions. Zeros of A387115.
Original entry on oeis.org
4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 52, 54, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172
Offset: 1
The complement for all partitions appears to be
A276078, counted by
A052335.
For divisors instead of strict partitions we have
A355740, counted by
A370320.
Twice-partitions of this type (into distinct strict partitions) are counted by
A358914.
For initial intervals instead of strict partitions we have
A387113, counted by
A387118.
These are the positions of 0 in
A387115.
The complement for constant partitions is
A387181, counted by
A387330.
A003963 multiplies together the prime indices of n.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
Cf.
A000720,
A261049,
A270995,
A335433,
A335448,
A355744,
A357978,
A357980,
A383706,
A387110,
A387120.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]
Comments