cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A339407 Number of partitions of n into an odd number of parts that are not multiples of 4.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 4, 7, 6, 13, 13, 21, 21, 36, 38, 57, 59, 90, 98, 137, 148, 210, 231, 310, 341, 459, 511, 664, 737, 957, 1073, 1357, 1518, 1918, 2156, 2673, 3002, 3712, 4182, 5100, 5737, 6976, 7866, 9460, 10652, 12777, 14402, 17126, 19284, 22867, 25761, 30340, 34139, 40099
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(6) = 4 because we have [6], [3, 2, 1], [2, 2, 2] and [2, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
          b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] - Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 - x^(4*k)) / (1 - x^k) - Product_{k>=1} (1 + x^(4*k)) / (1 + x^k)).
a(n) = (A001935(n) - A261734(n)) / 2.

A134747 Expansion of q * (chi(-q) / chi(-q^4))^8 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -8, 28, -64, 142, -352, 792, -1536, 2917, -5744, 10868, -19200, 33414, -58816, 101256, -167936, 275314, -452392, 732748, -1160064, 1819808, -2851104, 4421064, -6752256, 10236407, -15476272, 23215192, -34450944, 50811638, -74701632, 109138272, -158171136
Offset: 1

Views

Author

Michael Somos, Nov 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 8*q^2 + 28*q^3 - 64*q^4 + 142*q^5 - 352*q^6 + 792*q^7 - 1536*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q, q^2] QPochhammer[ -q^4, q^4])^8, {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( ( (eta(x + A) * eta(x^8 + A)) / (eta(x^2 + A) * eta(x^4 + A)) )^8, n))};

Formula

Expansion of k * (1 - k) / ( 4 * (1 + k) ) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus.
Expansion of ( (eta(q) * eta(q^8)) / (eta(q^2) * eta(q^4)) )^8 in powers of q.
Euler transform of period 8 sequence [ -8, 0, -8, 8, -8, 0, -8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = 16 * u*w * (v*w-1) * (v*u-1) - (v - u^2) * (v - w^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x * ( Product_{k>0} (1 + x^(4*k)) / (1 + x^k) )^8.
Convolution inverse of A131123.
Convolution 8th power of A261734. - Michael Somos, Oct 16 2015
a(n) ~ -(-1)^n * exp(Pi*sqrt(2*n)) / (2^(21/4) * n^(3/4)). - Vaclav Kotesovec, Apr 10 2018
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = -8 - 6*sqrt(2) + (3/2)*sqrt(60 + 43*sqrt(2)). - Simon Plouffe, Mar 04 2021

A302233 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, 0, -2, 0, 1, -1, 0, 0, 2, 0, 1, -1, 0, -1, 0, -3, 0, 1, -1, 0, -1, 2, -1, 4, 0, 1, -1, 0, -1, 1, -2, 1, -5, 0, 1, -1, 0, -1, 1, 0, 1, -1, 6, 0, 1, -1, 0, -1, 1, -1, 0, -2, 1, -8, 0, 1, -1, 0, -1, 1, -1, 2, -1, 4, 0, 10, 0, 1, -1, 0, -1, 1, -1, 1, -2, 1, -4, 0, -12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Examples

			Square array begins:
1,  1,  1,  1,  1,  1,  ...
0, -1, -1, -1, -1, -1,  ...
0,  1,  0,  0,  0,  0,  ...
0, -2,  0, -1, -1, -1,  ...
0,  2,  0,  2,  1,  1,  ...
0, -3, -1, -2,  0, -1,  ...
		

Crossrefs

Main diagonal gives A081362.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^(k i))/(1 + x^i), {i, 1, n}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-1, x^k]/QPochhammer[-1, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + x^(k*j))/(1 + x^j).
For asymptotics of column k see comment from Vaclav Kotesovec in A145707.
Previous Showing 11-13 of 13 results.