cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A262627 Minimal nested base-2 palindromic primes with seed 0.

Original entry on oeis.org

0, 101, 11001010011, 101100101001101, 10101011001010011010101, 111010101100101001101010111, 1111101010110010100110101011111, 101111111010101100101001101010111111101, 110101111111010101100101001101010111111101011
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2015

Keywords

Comments

Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s -- a(1) being not prime, of course.
Guide to related sequences
base seed base-b repr. base-10 repr.

Examples

			a(3) = 11001010011 =A117697(15) is the least prime having a(2) = 101 in its middle. Triangular format:
               0
              101
          11001010011
        101100101001101
    10101011001010011010101
  111010101100101001101010111
1111101010110010100110101011111
		

Crossrefs

Cf. A117697, A261881 (base 10), A262628-A262662.

Programs

  • Mathematica
    s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262627 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262628 *)
    (* Peter J. C. Moses, Sep 01 2015 *)

A053600 a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.

Original entry on oeis.org

2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 20 2000

Keywords

Examples

			As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
		

References

  • G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.

Crossrefs

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
  • Python
    from gmpy2 import digits, mpz, is_prime
    A053600_list, p = [2], 2
    for _ in range(30):
        m, ps = 1, digits(p)
        s = mpz('1'+ps+'1')
        while not is_prime(s):
            m += 1
            ms = digits(m)
            s = mpz(ms+ps+ms[::-1])
        p = s
        A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015

A082563 a(1) = 3; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.

Original entry on oeis.org

3, 131, 11311, 121131121, 1212113112121, 36121211311212163, 303612121131121216303, 7230361212113112121630327, 30723036121211311212163032703, 723072303612121131121216303270327, 1472307230361212113112121630327032741, 114723072303612121131121216303270327411
Offset: 1

Views

Author

Benoit Cloitre, May 04 2003

Keywords

Comments

The minimal nested palindromic primes with seed 3; see A261881 for a guide to related sequences.

Examples

			As a triangle:
........3
.......131
......11311
....121131121
..1212113112121
36121211311212163
		

Crossrefs

Programs

  • Mathematica
    s = {3}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
    (* Peter J. C. Moses, Sep 01 2015 *)

Extensions

Name changed by Arkadiusz Wesolowski, Sep 15 2011
More terms from Clark Kimberling, Sep 23 2015

A262639 Minimal nested palindromic base-4 primes with seed 3; see Comments.

Original entry on oeis.org

3, 131, 11311, 121131121, 1212113112121, 312121131121213, 101312121131121213101, 11131013121211311212131013111, 31311131013121211311212131013111313, 1011313111310131212113112121310131113131101, 310113131113101312121131121213101311131311013
Offset: 1

Views

Author

Clark Kimberling, Oct 24 2015

Keywords

Comments

Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-4 primes with seed s.

Examples

			a(3) = 11311 is the least base-4 prime having a(2) = 131 in its middle.
Triangular format:
         3
        131
       11311
     121131121
   1212113112121
  312121131121213
		

Crossrefs

Cf. A261881 (base 10), A262640, A262627.

Programs

  • Mathematica
    s = {3}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262639 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262640 *)
    (* Peter J. C. Moses, Sep 01 2015 *)

A262645 Minimal nested palindromic base-6 primes with seed 0; see Comments.

Original entry on oeis.org

0, 101, 5110115, 13511011531, 1135110115311, 111351101153111, 152111351101153111251, 5215211135110115311125125, 1025215211135110115311125125201, 1431025215211135110115311125125201341, 1111431025215211135110115311125125201341111
Offset: 1

Views

Author

Clark Kimberling, Oct 24 2015

Keywords

Comments

Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.

Examples

			a(3) = 5110115 is the least base-6 prime having a(2) = 101 in its middle.
Triangular format:
         0
        101
      5110115
    13511011531
   1135110115311
  111351101153111
		

Crossrefs

Cf. A261881 (base 10), A262646, A262627.

Programs

  • Mathematica
    s = {0}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262645 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262646 *)
    (* Peter J. C. Moses, Sep 01 2015 *)

A262651 Minimal nested palindromic base-6 primes with seed 3; see Comments.

Original entry on oeis.org

3, 11311, 121131121, 5312113112135, 14531211311213541, 1145312113112135411, 51114531211311213541115, 5511145312113112135411155, 50551114531211311213541115505, 115055111453121131121354111550511, 51150551114531211311213541115505115
Offset: 1

Views

Author

Clark Kimberling, Oct 27 2015

Keywords

Comments

Using only base-6 digits 0,1,2,3,4,5, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-6 primes with seed s.

Examples

			a(3) = 121131121 is the least base-6 prime having a(2) = 11311 in its middle. Triangular format:
        3
      11311
    121131121
  5312113112135
14531211311213541
		

Crossrefs

Cf. A261881 (base 10), A262652, A262627.

Programs

  • Mathematica
    s = {3}; base = 6; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262651 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262652 *)
    (* Peter J. C. Moses, Sep 01 2015 *)

A261818 Minimal nested palindromic primes with seed 1.

Original entry on oeis.org

1, 313, 93139, 3931393, 11393139311, 1113931393111, 17111393139311171, 331711139313931117133, 3333171113931393111713333, 133331711139313931117133331, 1813333171113931393111713333181, 1951813333171113931393111713333181591
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2015

Keywords

Comments

Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.

Examples

			As a symmetric triangle:
......1
.....313
....93139
...3931393
.11393139311
1113931393111
		

Crossrefs

Cf. A261881 (seed 0 with guide to related sequences).

Programs

  • Mathematica
    s = {1}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
    (* Peter J. C. Moses, Sep 01 2015 *)

A262629 Minimal nested base-2 palindromic primes with seed 1.

Original entry on oeis.org

1, 111, 11111, 1111111, 1001111111001, 1001001111111001001, 111110010011111110010011111, 111111110010011111110010011111111, 100111111110010011111110010011111111001, 1011010011111111001001111111001001111111100101101
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2015

Keywords

Comments

Using only base-2 digits 0 and 1, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-2 palindromic primes with seed s.

Examples

			a(5) = 1001111111001 = A117697(20) is the least base-2 prime having a(4) = 1111111 = A117697(8) in its middle. Triangular format:
             1
            111
           11111
          1111111
       1001111111001
    1001001111111001001
111110010011111110010011111
		

Crossrefs

Cf. A261881 (base 10), A262627. Subsequence of A117697 (expect a(1)).

Programs

  • Mathematica
    s = {1}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262629 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262630 *)
    (* Peter J. C. Moses, Sep 01 2015 *)

A262631 Minimal nested base-3 palindromic primes with seed 1.

Original entry on oeis.org

1, 111, 1111111, 22111111122, 1221111111221, 112211111112211, 2111221111111221112, 2102111221111111221112012, 1212102111221111111221112012121, 20121210211122111111122111201212102, 2002201212102111221111111221112012121022002
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2015

Keywords

Comments

Using only base-3 digits 0,1,2, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-3 palindromic primes with seed s.

Examples

			a(4) = 22111111122 is the least base-3 prime having a(3) = 1111111 in its middle. Triangular format:
         1
        111
      1111111
    22111111122
   1221111111221
  112211111112211
		

Crossrefs

Cf. A261881 (base 10), A262632, A262627. Subset of A117698 (except a(1)).

Programs

  • Mathematica
    s = {1}; base = 3; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262631 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262632 *)
    (* Peter J. C. Moses, Sep 01 2015 *)

A262633 Minimal nested base-4 palindromic primes with seed 0.

Original entry on oeis.org

0, 101, 31013, 3310133, 1023310133201, 3331023310133201333, 3223331023310133201333223, 1133223331023310133201333223311, 100311332233310233101332013332233113001, 10231003113322333102331013320133322331130013201
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2015

Keywords

Comments

Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested base-4 palindromic primes with seed s.

Examples

			a(3) = 31013 is the least base-4 prime having a(2) = 101 in its middle. Triangular format:
         0
        101
       31013
      3310133
   1023310133201
3331023310133201333,
		

Crossrefs

Cf. A261881 (base 10), A262634, A262627. Subsequence of A117699.

Programs

  • Mathematica
    s = {0}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
    AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s  (* A262633 *)
    Map[FromDigits[ToString[#], base] &, s]  (* A262634 *)
    (* Peter J. C. Moses, Sep 01 2015 *)
Showing 1-10 of 36 results. Next