cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A262810 Number of lattice paths from {n}^n to {0}^n using steps that decrement one or more components by one.

Original entry on oeis.org

1, 1, 13, 16081, 5552351121, 1050740615666453461, 179349571255187154941191217629, 41020870889694863957061607086939138327565057, 17469051230066445323872793284679234619523576313653708533767425
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2015

Keywords

Examples

			a(2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
		

Crossrefs

Main diagonal of A262809.
Cf. A316677.

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^n, {i, 0, j}], {j, 0, n^2}], {n, 1, 10}]}] (* Vaclav Kotesovec, Mar 23 2016 *)
  • PARI
    a(n)=sum(j=0,n^2,sum(i=0,j, (-1)^i*binomial(j, i)*binomial(j - i, n)^n)) \\ Charles R Greathouse IV, Jul 29 2016

Formula

a(n) = A262809(n,n).
a(n) ~ n^(n^2 - n/2 + 1) / (exp(1/12) * 2^(n + log(2)/24) * Pi^((n-1)/2) * log(2)^(n^2+1)). - Vaclav Kotesovec, Mar 23 2016

A263065 Number of lattice paths from {n}^5 to {0}^5 using steps that decrement one or more components by one.

Original entry on oeis.org

1, 541, 2244361, 14638956721, 117029959485121, 1050740615666453461, 10169807398958450670001, 103746115308050354021387521, 1100327453912286201909924526081, 12024609569670508078686022988554381, 134565509066155510620216211257550349401
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Comments

Also, the number of alignments for 5 sequences of length n each (Slowinski 1998).

Crossrefs

Column k=5 of A262809.

Programs

  • Mathematica
    With[{k = 5}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

Recurrence: (n-1)^2*n^4*(1484375*n^10 - 35625000*n^9 + 380459375*n^8 - 2379691875*n^7 + 9648658375*n^6 - 26483049785*n^5 + 49802335614*n^4 - 63319196190*n^3 + 52054873977*n^2 - 24970596338*n + 5304283784)*a(n) = (n-1)^2*(20417578125*n^14 - 530857031250*n^13 + 6241768390625*n^12 - 43891361846875*n^11 + 205684605242500*n^10 - 677508063221175*n^9 + 1612085561506345*n^8 - 2803601202034769*n^7 + 3564158318615391*n^6 - 3277539874902099*n^5 + 2131595379572790*n^4 - 942888582994608*n^3 + 265378603877984*n^2 - 41959963867392*n + 2757380659200)*a(n-1) + (5551562500*n^16 - 166546875000*n^15 + 2299855640625*n^14 - 19385476578125*n^13 + 111504090473125*n^12 - 463446487931900*n^11 + 1437445134614810*n^10 - 3387090699899014*n^9 + 6112545662650711*n^8 - 8450360220919608*n^7 + 8884444155685163*n^6 - 6993443486776441*n^5 + 4013714078940498*n^4 - 1609501825795072*n^3 + 420362394759120*n^2 - 62905338995616*n + 3977994685824)*a(n-2) + (1870312500*n^16 - 59850000000*n^15 + 882904671875*n^14 - 7959826712500*n^13 + 49013510712500*n^12 - 218196359173225*n^11 + 724960516804615*n^10 - 1829325996659659*n^9 + 3532586966500778*n^8 - 5219142662751755*n^7 + 5853433612256896*n^6 - 4902859151966701*n^5 + 2984426972027036*n^4 - 1263868309818152*n^3 + 346653353359072*n^2 - 54082532707344*n + 3532661100864)*a(n-3) - (n-3)^2*(7421875*n^14 - 207812500*n^13 + 2631125000*n^12 - 19925368750*n^11 + 100603166250*n^10 - 357324371050*n^9 + 917934587470*n^8 - 1726295128861*n^7 + 2377475157009*n^6 - 2372287254911*n^5 + 1675297653876*n^4 - 803613605640*n^3 + 244104664208*n^2 - 41262015600*n + 2856959424)*a(n-4) + (n-4)^4*(n-3)^2*(1484375*n^10 - 20781250*n^9 + 126631250*n^8 - 440391875*n^7 + 962896500*n^6 - 1373591410*n^5 + 1282871689*n^4 - 765049709*n^3 + 274306866*n^2 - 52342548*n + 3936312)*a(n-5). - Vaclav Kotesovec, Mar 22 2016
a(n) ~ c * d^n / (Pi^2 * n^2), where d = 13755.27190241150817120839544215413203... is the real root of the equation -1 + 5*d - 1260*d^2 - 3740*d^3 - 13755*d^4 + d^5 = 0 and c = 0.5698188923151523225906967169329722766951557573868... is the root of the equation -1 - 1600*c^2 - 896000*c^4 - 204800000*c^6 - 16384000000*c^8 + 52428800000*c^10 = 0. - Vaclav Kotesovec, Mar 22 2016

A384364 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 3^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 21, 9, 1, 1, 219, 657, 27, 1, 1, 3045, 119241, 22869, 81, 1, 1, 52923, 40365873, 80850987, 836001, 243, 1, 1, 1103781, 21955523049, 747786838869, 60579666801, 31436181, 729, 1, 1, 26857659, 17512689629457, 14298291269335467, 16117269494868801, 48066954848379, 1204022961, 2187, 1
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Examples

			Square array begins:
  1,  1,      1,           1,                 1, ...
  1,  3,     21,         219,              3045, ...
  1,  9,    657,      119241,          40365873, ...
  1, 27,  22869,    80850987,      747786838869, ...
  1, 81, 836001, 60579666801, 16117269494868801, ...
		

Crossrefs

Columns k=0..2 give A000012, A000244, 3^n * A084768(n).
Rows n=0..1 give A000012, A032033.

Programs

  • PARI
    a(n, k) = sum(i=0, k*n, 3^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));

Formula

A(n,k) = (1/4) * Sum_{j>=0} (3/4)^j * binomial(j,n)^k.

A263061 Number of lattice paths from {5}^n to {0}^n using steps that decrement one or more components by one.

Original entry on oeis.org

1, 1, 1683, 32193253, 3147728203035, 1050740615666453461, 939073157252309315848923, 1909946024633189859690880523893, 7868854300758955660834916406038038395, 60169662022264019813634467045726478557798101, 797656368265147949572521540584234236944835806750363
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Row n=5 of A262809.

Programs

  • Mathematica
    With[{r = 5}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 12}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

From Vaclav Kotesovec, Mar 23 2016: (Start)
a(n) ~ 5^(4*n+1/2) * n!^5 / (Pi^2 * n^2 * 2^(3*n+5) * 3^n * (log(2))^(5*n+1)).
a(n) ~ sqrt(Pi) * 5^(4*n+1/2) * n^(5*n+1/2) / (2^(3*n+5/2) * 3^n * exp(5*n) * (log(2))^(5*n+1)).
(End)

A263062 Number of lattice paths from {6}^n to {0}^n using steps that decrement one or more components by one.

Original entry on oeis.org

1, 1, 8989, 1538743249, 1887593866439485, 10169807398958450670001, 179349571255187154941191217629, 8508048612432263410111274212273801489, 943457762940832669626002608045124343895474045, 220079308019032269943223432841210561656944209845808241
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Row n=6 of A262809.

Programs

  • Mathematica
    With[{r = 6}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 12}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) ~ sqrt(6*Pi) * (6^5/5!)^n * n^(6*n+1/2) / (8 * exp(6*n) * (log(2))^(6*n+1)). - Vaclav Kotesovec, Mar 23 2016

A263063 Number of lattice paths from {8}^n to {0}^n using steps that decrement one or more components by one.

Original entry on oeis.org

1, 1, 265729, 3776339263873, 756051015055329306625, 1100327453912286201909924526081, 7835213566547395052871069325808866414849, 209691630817770382144439647416526247292909726379393, 17469051230066445323872793284679234619523576313653708533767425
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Row n=8 of A262809.

Programs

  • Mathematica
    With[{r = 8}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) ~ sqrt(8*Pi) * (8^7/7!)^n * n^(8*n+1/2) / (16 * exp(8*n) * (log(2))^(8*n+1)). - Vaclav Kotesovec, Mar 23 2016

A263066 Number of lattice paths from {n}^6 to {0}^6 using steps that decrement one or more components by one.

Original entry on oeis.org

1, 4683, 308682013, 35941784497263, 5402040231378569121, 939073157252309315848923, 179349571255187154941191217629, 36585008462723983824862891403150079, 7835213566547395052871069325808866414849, 1742079663955078309800553960117733249663480043
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Column k=6 of A262809.

Programs

  • Mathematica
    With[{k = 6}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) ~ sqrt(c) * d^n / (Pi*n)^(5/2), where d = 296476.91626442008149098622814984912648229139426918084511... is the root of the equation 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6 = 0 and c = 0.19491147281619801027873171908746401584984116403035035539868... is the root of the equation -1 - 4608*c - 7962624*c^2 - 6341787648*c^3 - 2283043553280*c^4 - 300578991243264*c^5 + 1603087953297408*c^6 = 0. - Vaclav Kotesovec, Mar 23 2016

A263067 Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one or more components by one.

Original entry on oeis.org

1, 47293, 58514835289, 143743469278461361, 480086443888959812703121, 1909946024633189859690880523893, 8508048612432263410111274212273801489, 41020870889694863957061607086939138327565057, 209691630817770382144439647416526247292909726379393
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Column k=7 of A262809.

Programs

  • Mathematica
    With[{k = 7}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) ~ sqrt(c) * d^n / (Pi*n)^3, where d = 7553550.61983382187210690975164995019966376572879... is the root of the equation -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7 = 0 and c = 0.1137319057755565367034882185733003109119819... is the root of the equation -1 - 12544*c - 61816832*c^2 - 151057858560*c^3 - 189486977777664*c^4 - 113186888059191296*c^5 - 25353862925258850304*c^6 + 231806746745223774208*c^7 = 0. - Vaclav Kotesovec, Mar 23 2016

A263068 Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one or more components by one.

Original entry on oeis.org

1, 545835, 14623910308237, 874531783382503604463, 74896283763383392805211587121, 7868854300758955660834916406038038395, 943457762940832669626002608045124343895474045, 124069835911824710311393852646151897334844371419287295
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Column k=8 of A262809.

Programs

  • Mathematica
    With[{k = 8}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) ~ sqrt(c) * d^n / (Pi*n)^(7/2), where d = 222082591.60172024210290001176855308841678706675284935653958249024021852... is the root of the equation 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8 = 0 and c = 0.065002105820899877029614597832047121767362853... . - Vaclav Kotesovec, Mar 23 2016

A263069 Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one or more components by one.

Original entry on oeis.org

1, 7087261, 4659168491711401, 7687300579969605991710001, 19133358944433370977791260580721121, 60169662022264019813634467045726478557798101, 220079308019032269943223432841210561656944209845808241, 894709632166224106718347951886305028154659386016685862593012481
Offset: 0

Views

Author

Alois P. Heinz, Oct 08 2015

Keywords

Crossrefs

Column k=9 of A262809.

Programs

  • Mathematica
    With[{k = 9}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) ~ sqrt(c) * d^n / (Pi*n)^4, where d = 7400694480.0494436216324852038000444393262965328... and c = 0.0365684849906610318536810681059888603001404... . - Vaclav Kotesovec, Mar 23 2016
Previous Showing 21-30 of 37 results. Next