cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A082970 Number of permutations of length n containing 2 occurrences of 132.

Original entry on oeis.org

4, 23, 107, 464, 1950, 8063, 33033, 134576, 546312, 2212550, 8946454, 36134656, 145831270, 588199815, 2371435125, 9557736480, 38511326040, 155143873170, 624899673690, 2516678580000, 10134353299980, 40805797511622
Offset: 4

Views

Author

Benoit Cloitre, May 27 2003

Keywords

Crossrefs

Column k=2 of A263771.

Programs

  • Mathematica
    Table[Binomial[2n-6,n-2] (n^3+17n^2-80n+80)/(2n(n-1)),{n,4,30}] (* Harvey P. Dale, Dec 25 2018 *)
  • PARI
    a(n)=binomial(2*n-6,n-2)*(n^3+17*n^2-80*n+80)/2/n/(n-1)

Formula

a(n) = C(2*n-6,n-2)*(n^3+17*n^2-80*n+80)/(2n(n-1)).

A082971 Number of permutations of {1,2,...,n} containing exactly 3 occurrences of the 132 pattern.

Original entry on oeis.org

1, 14, 82, 410, 1918, 8657, 38225, 166322, 716170, 3059864, 12994936, 54924212, 231235054, 970347575, 4060697955, 16952812170, 70629116910, 293720506860, 1219498444500, 5055891511980, 20933654593020, 86571545598642, 357628915621698, 1475896409177780
Offset: 4

Views

Author

Benoit Cloitre, May 27 2003

Keywords

Examples

			a(4)=1 because we have 1432 (the 132 occurrences are 143, 142 and 132).
		

Crossrefs

Column k=3 of A263771.

Programs

  • Magma
    [1] cat [(n^6+51*n^5-407*n^4-99*n^3+7750*n^2-22416*n+20160)* Factorial(2*n-9)/(6*Factorial(n)*Factorial(n-5)): n in [5..30]]; // Vincenzo Librandi, Oct 30 2018
  • Maple
    P:=2*x^3-5*x^2+7*x-2: Q:=-22*x^6-106*x^5+292*x^4-302*x^3+135*x^2-27*x+2: g:= (P+Q/(1-4*x)^(5/2))*1/2: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=4..25); # Emeric Deutsch, Mar 27 2008
  • Mathematica
    a[4] = 1; a[n_] := (n^6 + 51 n^5 - 407 n^4 - 99 n^3 + 7750 n^2 - 22416 n + 20160) (2 n - 9)!/(6 n! (n - 5)!);
    Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Oct 30 2018 *)
  • PARI
    a(n)=(2*n-9)!/n!/6/(n-5)!*(n^6+51*n^5-407*n^4-99*n^3 +7750*n^2 -22416*n+20160)
    

Formula

a(n) = (2*n-9)!/n!/6/(n-5)! *(n^6+51*n^5-407*n^4-99*n^3 +7750*n^2 -22416*n +20160).
a(n) = (n^6 + 51*n^5 - 407*n^4 - 99*n^3 + 7750*n^2 - 22416*n + 20160)*(2*n-9)!/(6*n!*(n-5)!) for n>=5; a(4)=1. G.f.: (1/2)*(P(x) + Q(x)/(1-4*x)^(5/2)), where P(x) = 2*x^3 - 5*x^2 + 7*x - 2, Q(x) = -22*x^6 - 106*x^5 + 292*x^4 - 302*x^3 + 135*x^2 - 27*x + 2. - Emeric Deutsch, Mar 27 2008

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar

A138162 Number of permutations of {1,2,...,n} containing exactly 4 occurrences of the 132 pattern.

Original entry on oeis.org

12, 96, 526, 2593, 12165, 55482, 248509, 1099255, 4817998, 20968680, 90747564, 390927869, 1677551078, 7174848666, 30598014925, 130155932685, 552386655300, 2339526458640, 9890067346740, 41737405295250, 175859194700958
Offset: 5

Views

Author

Emeric Deutsch, Mar 27 2008

Keywords

Examples

			a(5)=12 because we have 12534, 12453, 14253, 14523, 13254, 13524, 15324, 14352, 31542, 21534, 21453 and 25143.
		

Crossrefs

Column k=4 of A263771.

Programs

  • Maple
    P:=5*x^4-7*x^3+2*x^2+8*x-3: Q:=2*x^9+218*x^8+1074*x^7-1754*x^6 +388*x^5 +1087*x^4-945*x^3+320*x^2-50*x+3: g:=(P+Q/(1-4*x)^(7/2))*1/2: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=5..25);

Formula

a(n) = (n^9+102n^8-282n^7-12264n^6+32589n^5+891978n^4-7589428n^3 +25452024n^2-39821760n +23950080)(2n-12)!/[24n!(n-6)! ] for n>=6, a(5)=12.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(7/2)], where P(x)=5x^4-7x^3+2x^2+8x-3, Q(x)=2x^9 +218x^8+1074x^7 -1754x^6 +388x^5 +1087x^4 -945x^3+320x^2-50x+3.

A138163 Number of permutations of {1,2,...,n} containing exactly 5 occurrences of the pattern 132.

Original entry on oeis.org

5, 55, 394, 2225, 11539, 57064, 273612, 1283621, 5924924, 27005978, 121861262, 545368160, 2423923480, 10710273856, 47085144255, 206085075295, 898489543020, 3903621095130, 16906888008960, 73018012573950, 314540265217362
Offset: 5

Views

Author

Emeric Deutsch, Mar 28 2008

Keywords

Examples

			a(5)=5 because we have 13542, 14532, 15243, 15342 and 15423.
		

References

  • B. K. Nakamura, Computational methods in permutation patterns, PhD Dissertation, Rutgers University, May 2013.

Crossrefs

Column k=5 of A263771.

Programs

  • Maple
    a:=proc(n) options operator, arrow: (1/120)*(n^12+170*n^11 +1861*n^10 -88090*n^9 -307617*n^8 +27882510*n^7 -348117457*n^6 +2119611370*n^5 -6970280884*n^4 +10530947320*n^3 +2614396896*n^2 -30327454080*n +29059430400) *factorial(2*n-15) / (factorial(n)*factorial(n-7)) end proc: 5, 55, 394, seq(a(n), n = 8 .. 25);
  • Mathematica
    terms = 21; offset = 5;
    P[x_] := 14 x^5 - 17 x^4 + x^3 - 16 x^2 + 14 x - 2;
    Q[x_] := -50 x^11 - 2568 x^10 - 10826 x^9 + 16252 x^8 - 12466 x^7 + 16184 x^6 - 16480 x^5 + 9191 x^4 - 2893 x^3 + 520 x^2 - 50 x + 2;
    Drop[CoefficientList[(1/2) (P[x] + Q[x]/(1 - 4 x)^(9/2)) + O[x]^(terms + offset), x], offset] (* Jean-François Alcover, Dec 13 2017 *)

Formula

a(n) = (n^12+170n^11+1861n^10-88090n^9-307617n^8+27882510n^7 -348117457n^6 +2119611370n^5 -6970280884n^4 +10530947320n^3 +2614396896n^2 -30327454080n +29059430400)(2n-15)!/[120 n!(n-7)! ] for n>=8; a(5)=5; a(6)=55; a(7)=394.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(9/2)], where P(x) = 14x^5 - 17x^4 + x^3 - 16x^2 + 14x - 2, Q(x)= -50x^11 - 2568x^10 - 10826x^9 + 16252x^8 - 12466x^7 + 16184x^6 - 16480x^5 + 9191x^4 - 2893x^3 + 520x^2 - 50x + 2.
Previous Showing 11-14 of 14 results.