cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A279552 Number of length n inversion sequences avoiding the patterns 000 and 010.

Original entry on oeis.org

1, 1, 2, 4, 10, 29, 95, 345, 1376, 5966, 27886, 139608, 744552, 4210191, 25140790, 157981820, 1041480482, 7183374125, 51711299169, 387683162541, 3020997261596, 24424884853963, 204559337781097, 1772011400733378, 15855597322378302, 146360032952969570
Offset: 0

Views

Author

Megan A. Martinez, Dec 15 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_k and e_i = e_k. This is the same as the set of length n inversion sequences avoiding 000 and 010.

Examples

			For n=3, the inversion sequences are 001, 002, 011, 012.
For n=4, the inversion sequences are 0011, 0012, 0013, 0021, 0022, 0023, 0112, 0113, 0122, 0123.
		

Crossrefs

Extensions

a(10)-a(20) from Alois P. Heinz, Feb 23 2017
a(21) onwards from Benjamin Testart, Feb 01 2023

A279561 Number of length n inversion sequences avoiding the patterns 101, 102, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 287, 1079, 4082, 15522, 59280, 227240, 873886, 3370030, 13027730, 50469890, 195892565, 761615285, 2965576715, 11563073315, 45141073925, 176423482325, 690215089745, 2702831489825, 10593202603775, 41550902139551, 163099562175851
Offset: 0

Views

Author

Megan A. Martinez, Jan 17 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k. This is the same as the set of length n inversion sequences avoiding 101, 102, 201, and 210.
It is conjectured that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 021 and 120.

Examples

			The length 4 inversion sequences avoiding (101, 102, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (021, 120) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+n*(n-1)/2,
          ((5*n^2-12*n+6)*a(n-1)-(4*n^2-10*n+6)*a(n-2))/((n-2)*n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    a[n_] := 1 + Sum[Binomial[2i, i-1], {i, 0, n-1}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2017 *)

Formula

a(n) = 1 + Sum_{i=1..n-1} binomial(2i, i-1).
a(n) = 1 + A057552(n-2).
G.f.: (1-4*x+sqrt(-16*x^3+20*x^2-8*x+1))/(2*(x-1)*(4*x-1)).
D-finite with recurrence: n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 21 2020

A279551 Number of length n inversion sequences avoiding the patterns 000, 010, 110, and 120.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 79, 247, 816, 2822, 10158, 37875, 145695, 576288, 2337412, 9698820, 41089107, 177424188, 779699793, 3482575169, 15791709187, 72621800171, 338388714955, 1596314968112, 7618218238583, 36756086159343, 179176803145900, 882002961543492
Offset: 0

Views

Author

Megan A. Martinez, Dec 15 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_k. This is the same as the set of length n inversion sequences avoiding 000, 010, 110, and 120.

Examples

			For n=3, the inversion sequences are 001, 002, 011, 012.
For n=4, the inversion sequences are 0011, 0012, 0013, 0021, 0022, 0023, 0112, 0113, 0122, 0123.
		

Crossrefs

Extensions

Typo in comment corrected and a(10)-a(27) added by Alois P. Heinz, Feb 22 2017

A279553 Number of length n inversion sequences avoiding the patterns 110, 210, 120, 201, and 010.

Original entry on oeis.org

1, 1, 2, 5, 15, 50, 178, 663, 2552, 10071, 40528, 165682, 686151, 2872576, 12137278, 51690255, 221657999, 956265050, 4147533262, 18074429421, 79102157060, 347519074010, 1532070899412, 6775687911920, 30052744139440, 133649573395725, 595816470717728
Offset: 0

Views

Author

Megan A. Martinez, Dec 15 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 110, 120, 201, and 210.
It can be shown that this sequence also counts the length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 100, 120, 201, and 210.

Examples

			The length 3 inversion sequences avoiding (110, 210, 120, 201, 010) are 000, 001, 002, 011, 012.
The length 4 inversion sequences avoiding (110, 210, 120, 201, 010) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 5][n+1],
          ((12*(n-1))*(182*n^3-1659*n^2+4628*n-3756)*a(n-1)
          -(4*(91*n^4-1057*n^3+3812*n^2-4046*n-906))*a(n-2)
          +(6*(n-4))*(182*n^3-1659*n^2+4901*n-4630)*a(n-3)
          -(4*(n-4))*(n-5)*(91*n^2-511*n+690)*a(n-4))
           /(5*n*(n-1)*(91*n^2-693*n+1292)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    a[n_] := a[n] = If[n < 4, {1, 1, 2, 5}[[n + 1]], ((12*(n - 1))*(182*n^3 - 1659*n^2 + 4628*n - 3756)*a[n - 1] - (4*(91*n^4 - 1057*n^3 + 3812*n^2 - 4046*n - 906))*a[n - 2] + (6*(n - 4))*(182*n^3 - 1659*n^2 + 4901*n - 4630)*a[n - 3] - (4*(n - 4))*(n - 5)*(91*n^2 - 511*n + 690)*a[n - 4]) / (5*n*(n - 1)*(91*n^2 - 693*n + 1292))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
  • PARI
    seq(N) = my(x='x+O('x^N)); Vec(1+serreverse((-x^3+x^2+x)/(2*x^2+3*x+1)));
    seq(27) \\ Gheorghe Coserea, Jul 11 2018

Formula

G.f.: 1 + Series_Reversion(x*A094373(-x)). - Gheorghe Coserea, Jul 11 2018
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 4.730576939379622099763633264641101585205420756515858657461873... is the greatest real root of the equation 4 - 12*d + 4*d^2 - 24*d^3 + 5*d^4 = 0 and c = 0.3916760466183576202289779130261876915536170330427700961416097... is the positive real root of the equation -5 - 64*c^2 - 33728*c^4 + 209664*c^6 + 93184*c^8 = 0. - Vaclav Kotesovec, Jul 12 2018
D-finite with recurrence: 45*n*(n-1)*a(n) -4*(n-1)*(49*n-66)*a(n-1) +2*(-25*n^2+157*n-264)*a(n-2) +2*(-70*n^2+445*n-714)*a(n-3) -4*(n-6)*(n-13)*a(n-4) -4*(n-6)*(2*n-17)*a(n-5) +8*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Feb 21 2020

Extensions

a(10)-a(16) from Lars Blomberg, Feb 02 2017
a(17)-a(26) from Alois P. Heinz, Feb 22 2017

A279556 Number of length n inversion sequences avoiding the patterns 010, 110, and 120.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 190, 759, 3206, 14180, 65203, 309998, 1517330, 7619541, 39145113, 205261890, 1096393056, 5955598301, 32852080738, 183797522935, 1041802426740, 5977047039743, 34679912608313, 203345277644481, 1204104271508239, 7196256426157901
Offset: 0

Views

Author

Megan A. Martinez, Dec 16 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 110, and 120.

Examples

			The length 3 inversion sequences avoiding (010, 110, 120) are 000, 001, 002, 011, 012
The length 4 inversion sequences avoiding (010, 110, 120) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Extensions

a(10)-a(11) from Alois P. Heinz, Feb 24 2017
a(12)-a(16) from Bert Dobbelaere, Dec 30 2018
a(17)-a(25) from Nicholas R. Beaton, Aug 29 2025

A279560 Number of length n inversion sequences avoiding the patterns 100, 210, 201, and 102.

Original entry on oeis.org

1, 1, 2, 6, 21, 76, 277, 1016, 3756, 13998, 52554, 198568, 754316, 2878552, 11027384, 42384412, 163372325, 631290168, 2444700421, 9485463044, 36866810877, 143508889270, 559399074443, 2183269032876, 8530724152279, 33366805383326, 130633854520329, 511889287682280
Offset: 0

Views

Author

Megan A. Martinez, Jan 17 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 100, 210, 201, and 102.

Examples

			The length 4 inversion sequences avoiding (100, 210, 201, 102) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n!,
         ((6*(9*n^4-61*n^3+100*n^2+52*n-140))*a(n-1)
         -(3*(3*n-8))*(9*n^3-38*n^2+3*n+70)*a(n-2)
         +(2*(2*n-7))*(9*n^3-31*n^2-2*n+60)*a(n-3))
          / ((9*n^3-58*n^2+87*n+22)*n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 24 2017
  • Mathematica
    a[0] = 1; a[n_] := Binomial[2n-2, n-1] + Sum[(4i Binomial[2i+1, i+1]) / ((i+2)(i+3)), {k, 2, n-2}, {i, 1, k-1}]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017 *)
  • PARI
    a(n) = if (n==0, 1, binomial(2*n-2,n-1) + sum(k=2, n-2, sum(i=1,k-1, sum(u=1, i, sum(d=0, u-1, ((i-d+1)/(i+1)*binomial(i+d,d))))))); \\ Michel Marcus, Jan 18 2017

Formula

a(n) = binomial(2n-2,n-1) + Sum_{k=2..n-2} Sum_{i=1..k-1} Sum_{u=1..i} Sum_{d=0..u-1} ((i-d+1)/(i+1)*binomial(i+d,d)) for n>0, a(0)=1.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 07 2021

Extensions

More terms from Michel Marcus, Jan 18 2017

A279562 Number of length n inversion sequences avoiding the patterns 100, 102, and 201.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 299, 1176, 4729, 19378, 80667, 340260, 1451277, 6248758, 27124703, 118576648, 521574769, 2306766426, 10251761219, 45759404076, 205050758165, 922104978430, 4160045001703, 18823187479504, 85400356099001, 388422301113250, 1770695668597643, 8089198184655732, 37027394471695197
Offset: 0

Views

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <= e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 100, 102, and 201.

Examples

			The length 4 inversion sequences avoiding (100, 102, 201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Formula

G.f.: (2 + x - 10*x^2 + 4*x^3 - (2-3*x)*(1 - 4*x - 4*x^2)^(1/2)) / (8*x*(1 - x)^2). - Nathan J. Britt, Jun 08 2025
a(n) ~ c * (2 + 2*sqrt(2))^n / n^(3/2), where c = 0.40413545332026258682681691461076303199449216224437... - Nathan J. Britt, Jun 08 2025

Extensions

a(10)-a(12) from Alois P. Heinz, Feb 24 2017
a(13)-a(17) from Bert Dobbelaere, Dec 30 2018
More terms from Nathan J. Britt, Jun 08 2025

A279563 Number of length n inversion sequences avoiding the patterns 102, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 85, 328, 1253, 4754, 17994, 68158, 258808, 985906, 3768466, 14451386, 55585014, 214377618, 828795169, 3211030684, 12464308997, 48465092366, 188733879657, 735977084412, 2873525548315, 11231884145434, 43947466923095, 172115939825516
Offset: 0

Views

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 102, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (102, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n!,
          ((2*(12*n^3-91*n^2+213*n-149))*a(n-1)
          -(3*(21*n^3-162*n^2+392*n-291))*a(n-2)
          +(2*(33*n^3-257*n^2+633*n-484))*a(n-3)
          -(4*(2*n-7))*(3*n^2-13*n+13)*a(n-4))
           / ((n-1)*(3*n^2-19*n+29)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    a[n_] := a[n] = If[n < 4, n!, ((2*(12*n^3 - 91*n^2 + 213*n - 149))*a[n-1] - (3*(21*n^3 - 162*n^2 + 392*n - 291))*a[n-2] + (2*(33*n^3 - 257*n^2 + 633*n - 484))*a[n-3] - (4*(2*n - 7))*(3*n^2 - 13*n + 13)*a[n-4]) / ((n - 1)*(3*n^2 - 19*n + 29))]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)

Formula

a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 07 2021
G.f.: (2 - 15*x + 32*x^2 - 16*x^3 + x * (1 - 2*x) * (1 + 2*x) * (1 - 4*x)^(1/2)) / (2 * (1 - x)^2 * (1 - 2*x) * (1 - 4*x)). - Nathan J. Britt, Jun 08 2025

Extensions

a(10)-a(26) from Alois P. Heinz, Feb 22 2017

A279567 Number of length n inversion sequences avoiding the patterns 100, 110, 120, and 210.

Original entry on oeis.org

1, 1, 2, 6, 21, 82, 343, 1509, 6893, 32419, 156058, 765578, 3815062, 19263736, 98368919, 507197436, 2637242188, 13814247530, 72834238423, 386244387688, 2058933104170, 11026807340592, 59304897232442, 320181600386661, 1734685419170666, 9428340999504441
Offset: 0

Views

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 110, 120, and 210.

Examples

			The length 4 inversion sequences avoiding (100, 110, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, 1, add((h->
          b(n-1, i-h+1, max(m, j)-h))(max(0, min(m-1, j))), j=1..i))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 23 2017
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[n == 0, 1, Sum[b[n-1, i-#+1, Max[m, j]-#]& @ Max[0, Min[m-1, j]], {j, 1, i}]]; a[n_] := b[n, 1, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * (1 + sqrt(2))^(2*n) / n^(3/2), where c = 0.066085708825649431003670013119332303648755519420440375... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 23 2017

A279568 Number of length n inversion sequences avoiding the patterns 110, 120, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 396, 1833, 8801, 43441, 219092, 1124201, 5850414, 30805498, 163824559, 878655117, 4747341879, 25815026491, 141173582016, 775920816789, 4283833709457, 23746640019657, 132116647765569, 737485227605338, 4129174120158569, 23183379592361839
Offset: 0

Views

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 110, 120, 201, and 210.
It was shown that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 120, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (110, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (100, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) option remember; `if`(n=0, 1, add((h->
          b(n-1, i-h+2, j-h+1))(max(1, `if`(j=l, 0, l))), j=1..i))
        end:
    a:= n-> b(n, 1$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 23 2017
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, 1, Sum[b[n-1, i-#+2, j-#+1]& @ Max[1, If[j == l, 0, l]], {j, 1, i}]]; a[n_] :=  b[n, 1, 1];  Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 5.98041772076926677236919875200507... is the positive root of the equation -32 - 195*d - 12*d^2 - 112*d^3 + 20*d^4 = 0 and c = 0.1056946795054351807407212356928404107733262398133039312067247126343... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 23 2017
Previous Showing 11-20 of 34 results. Next