cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A263272 Self-inverse permutation of nonnegative integers: a(n) = A263273(2*n) / 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 8, 9, 10, 7, 12, 13, 14, 15, 32, 23, 18, 29, 20, 33, 38, 17, 24, 35, 26, 27, 28, 19, 30, 37, 16, 21, 34, 25, 36, 31, 22, 39, 40, 41, 42, 95, 68, 45, 86, 59, 96, 113, 50, 69, 104, 77, 54, 83, 56, 87, 110, 47, 60, 101, 74, 99, 92, 65, 114, 119, 44, 51, 98, 71, 72, 89, 62, 105, 116, 53, 78, 107, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; Table[f[2 n]/2, {n, 0, 81}] (* Michael De Vlieger, Jan 04 2016,after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(2*n)/2 # Indranil Ghosh, May 23 2017
  • Scheme
    (define (A263272 n) (/ (A263273 (+ n n)) 2))
    

Formula

a(n) = A263273(2*n) / 2 = A264984(n) / 2.
As a composition of related permutations:
a(n) = A264974(A264975(n)) = A264976(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]
A264974(n) = a(2n)/2. [Thus the restriction onto even numbers induces yet another permutation.]

A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 19, 8, 9, 10, 5, 12, 13, 22, 21, 64, 23, 18, 55, 20, 57, 58, 25, 24, 73, 26, 27, 28, 11, 30, 31, 16, 15, 46, 17, 36, 37, 14, 39, 40, 67, 66, 199, 68, 63, 190, 65, 192, 193, 70, 69, 208, 71, 54, 163, 56, 165, 166, 61, 60, 181, 62, 171, 172, 59, 174, 175, 76, 75, 226, 77, 72, 217, 74, 219, 220, 79, 78, 235, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(a263273(2*n)/2) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (define (A265352 n) (A263273 (A263272 n)))
    

Formula

a(n) = A263273(A263272(n)).
As a composition of other related permutations:
a(n) = A265368(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.

A264978 Self-inverse permutation of nonnegative integers: a(n) = A263273(8*n)/8.

Original entry on oeis.org

0, 1, 2, 3, 8, 5, 6, 7, 4, 9, 10, 17, 24, 26, 14, 15, 23, 11, 18, 29, 20, 21, 25, 16, 12, 22, 13, 27, 28, 19, 30, 71, 44, 51, 62, 35, 72, 89, 53, 78, 80, 41, 42, 68, 32, 45, 86, 59, 69, 77, 50, 33, 65, 38, 54, 83, 56, 87, 74, 47, 60, 61, 34, 63, 88, 52, 75, 79, 43, 48, 70, 31, 36, 85, 58, 66, 76, 49, 39, 67, 40, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 06 2015

Keywords

Comments

Note that n=13 is the first point where this involution does not preserve the parity as a(13) = 26.

Crossrefs

Formula

a(n) = A263273(8*n)/8.
a(n) = A263272(4*n)/4.
a(n) = A264974(2*n)/2.
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
Previous Showing 11-14 of 14 results.