cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 19, 8, 9, 10, 5, 12, 13, 22, 21, 64, 23, 18, 55, 20, 57, 58, 25, 24, 73, 26, 27, 28, 11, 30, 31, 16, 15, 46, 17, 36, 37, 14, 39, 40, 67, 66, 199, 68, 63, 190, 65, 192, 193, 70, 69, 208, 71, 54, 163, 56, 165, 166, 61, 60, 181, 62, 171, 172, 59, 174, 175, 76, 75, 226, 77, 72, 217, 74, 219, 220, 79, 78, 235, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(a263273(2*n)/2) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (define (A265352 n) (A263273 (A263272 n)))
    

Formula

a(n) = A263273(A263272(n)).
As a composition of other related permutations:
a(n) = A265368(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.

A264975 Permutation of nonnegative integers: a(n) = A264974(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 19, 16, 9, 10, 7, 12, 13, 14, 15, 46, 43, 18, 55, 20, 57, 58, 17, 48, 49, 52, 27, 28, 11, 30, 31, 8, 21, 22, 25, 36, 37, 34, 39, 40, 41, 42, 127, 124, 45, 136, 47, 138, 139, 44, 129, 130, 133, 54, 163, 56, 165, 166, 59, 60, 181, 178, 171, 172, 169, 174, 175, 50, 51, 154, 151, 144, 145, 142, 147, 148, 53, 156, 157, 160, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Formula

a(n) = A264974(A263272(n)).
a(n) = A263272(A264984(n)) / 2.
a(n) = (1/4) * A264984(A264984(n)) = (1/4) * A263273(2 * A263273(2*n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A265355 Permutation of nonnegative integers: a(n) = A263272(A264985(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 5, 11, 7, 8, 13, 27, 18, 28, 36, 15, 29, 21, 24, 37, 30, 33, 31, 39, 14, 32, 16, 17, 38, 19, 20, 34, 22, 23, 35, 25, 26, 40, 81, 54, 82, 108, 45, 83, 63, 72, 109, 90, 99, 85, 117, 42, 86, 48, 51, 110, 57, 60, 88, 66, 69, 89, 75, 78, 118, 84, 87, 91, 93, 96, 92, 102, 105, 112, 111, 114, 94, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of permutations obtained from the bisections of A263273.

Crossrefs

Programs

Formula

a(n) = A263272(A264985(n)).

A265356 Permutation of nonnegative integers: a(n) = A264985(A263272(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 11, 12, 5, 7, 10, 8, 13, 27, 18, 29, 30, 15, 32, 33, 20, 35, 36, 21, 38, 39, 14, 16, 19, 23, 25, 28, 24, 34, 37, 17, 22, 31, 26, 40, 81, 54, 83, 84, 45, 86, 87, 56, 89, 90, 57, 92, 93, 42, 95, 96, 59, 98, 99, 60, 101, 102, 47, 104, 105, 62, 107, 108, 63, 110, 111, 48, 113, 114, 65, 116, 117, 66, 119, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of permutations obtained from the bisections of A263273.

Crossrefs

Programs

Formula

a(n) = A264985(A263272(n)).

A264976 Permutation of nonnegative integers: a(n) = A263272(A264974(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 32, 9, 10, 29, 12, 13, 14, 15, 8, 23, 18, 7, 20, 33, 34, 95, 96, 35, 104, 27, 28, 83, 30, 31, 86, 87, 38, 113, 36, 37, 110, 39, 40, 41, 42, 17, 50, 45, 16, 47, 24, 25, 68, 69, 26, 77, 54, 19, 56, 21, 22, 59, 60, 101, 302, 99, 100, 299, 102, 103, 284, 285, 98, 293, 288, 97, 290, 105, 106, 311, 312, 107, 320, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Inverse: A264975
Cf. also A264991, A264992.

Formula

a(n) = A263272(A264974(n)).
a(n) = (1/2) * A263273(A263273(4*n) / 2).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A265904 Self-inverse permutation of nonnegative integers: a(n) = A263272(A263273(A263272(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 29, 8, 9, 10, 5, 12, 13, 38, 33, 92, 17, 18, 83, 20, 87, 110, 35, 24, 89, 26, 27, 28, 7, 30, 37, 32, 15, 86, 23, 36, 31, 14, 39, 40, 119, 114, 281, 44, 99, 254, 65, 276, 335, 98, 51, 260, 71, 54, 245, 56, 249, 326, 101, 60, 263, 74, 261, 272, 47, 330, 353, 116, 105, 278, 53, 72, 251, 62, 267, 332, 107, 78, 269, 80, 81, 82, 19
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Comments

A263273 conjugated with the permutation obtained from its even bisection.

Crossrefs

Cf. also A265902.
Cf. A265369, A266190, A266401, A266403 (other conjugates or similar derivations of A263273).

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@g[n] h[n]]]; t = Table[f[2 n]/2, {n, 0, 1000}]; Table[t[[f[t[[n + 1]]] + 1]], {n, 0, 83}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(a263272(n))) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265904 n) (A263272 (A263273 (A263272 n))))
    

Formula

a(n) = A263272(A263273(A263272(n))).
As a composition of related permutations:
a(n) = A263272(A265352(n)).
a(n) = A265351(A263272(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A264967 Permutation of nonnegative integers: a(n) = A263272(A246200(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 8, 9, 10, 7, 12, 29, 14, 15, 32, 23, 18, 13, 20, 33, 38, 27, 24, 25, 22, 17, 28, 39, 30, 37, 16, 21, 34, 35, 36, 41, 26, 19, 40, 31, 42, 95, 68, 105, 54, 47, 96, 119, 98, 69, 116, 55, 86, 83, 56, 71, 78, 59, 60, 107, 74, 99, 92, 65, 114, 113, 44, 81, 50, 87, 72, 89, 82, 45, 104, 53, 110, 101, 80, 51
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Inverse: A264968.
Cf. also A264965, A264966.

Programs

Formula

a(n) = A263272(A246200(n)).
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of numbers.]

A264968 Permutation of nonnegative integers: a(n) = A246200(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 8, 9, 10, 7, 12, 19, 14, 15, 32, 27, 18, 39, 20, 33, 26, 17, 24, 25, 38, 23, 28, 13, 30, 41, 16, 21, 34, 35, 36, 31, 22, 29, 40, 37, 42, 123, 68, 75, 86, 47, 96, 135, 70, 81, 152, 77, 46, 53, 56, 107, 110, 59, 60, 163, 82, 99, 108, 65, 142, 111, 44, 51, 134, 57, 72, 139, 62, 147, 156, 83, 58, 87, 80, 69
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Inverse: A264967.
Cf. also A264965, A264966.

Programs

Formula

a(n) = A246200(A263272(n)).
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of numbers.]

A264986 Even bisection of A263272; terms of A264974 doubled.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 32, 18, 20, 38, 24, 26, 28, 30, 16, 34, 36, 22, 40, 42, 68, 86, 96, 50, 104, 54, 56, 110, 60, 74, 92, 114, 44, 98, 72, 62, 116, 78, 80, 82, 84, 46, 100, 90, 64, 118, 48, 70, 88, 102, 52, 106, 108, 58, 112, 66, 76, 94, 120, 122, 284, 126, 176, 338, 204, 230, 248, 258, 140, 302, 288
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(4*n)/2 # Indranil Ghosh, May 23 2017
  • Scheme
    (define (A264986 n) (A263272 (+ n n)))
    

Formula

a(n) = A263272(2*n).
a(n) = 2 * A264974(n).
a(n) = A263273(4*n)/2.
Showing 1-10 of 28 results. Next