A266800
Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-8, -12, -98, -636, -4424, -30138, -207032, -1417788, -9720866, -66619404, -456638168, -3129787002, -21452029928, -147034005996, -1007787102434, -6907472856348, -47344530365672, -324504220137018, -2224185061818776, -15244791078484764, -104489352838678178
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -8;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = -12;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = -98.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
A266801
Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-7, 23, 65, 653, 3935, 28373, 190793, 1317335, 9003953, 61779965, 423273503, 2901611813, 19886759705, 136308977303, 934267517345, 6403586065133, 43890776239583, 300832001287925, 2061932830446953, 14132698865151575, 96866956468010513, 663936003630421853
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -7;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 23;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 65.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
A266802
Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
2, -12, -16, -294, -1552, -11868, -78142, -543996, -3706624, -25463142, -174376288, -1195587372, -8193644926, -56162781804, -384938354032, -2638425262758, -18083987259952, -123949619666556, -849562999302334, -5822992294650972, -39911380656754528
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x) = 1 - 8 x - 7 x^2 + 2 x^3 + x^4, so a(0) = 2;
[1,sqrt(3),1,1,1,...] has p(1,x) = 1 - 12 x + 23 x^2 - 12 x^3 + x^4, so a(1) = -12;
[1,1,sqrt(3),1,1,1...] has p(2,x) = 49 - 98 x + 65 x^2 - 16 x^3 + x^4, so a(2) = -16.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
A266804
Coefficient of x^0 in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones.
Original entry on oeis.org
19, 19, 361, 1795, 14011, 91489, 638899, 4348051, 29883145, 204609571, 1402971259, 9614651329, 65903614291, 451700107795, 3096024736681, 21220400800579, 145446970016059, 996907894114081, 6832909585226995, 46833455808339091, 321001289959109449
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x)=19-14x-13x^2+2x^3+x^4, so a(0) = 19;
[1,sqrt(6),1,1,1,...] has p(1,x)=19-90x+143x^2-90x^3+19x^4, so a(1) = 19;
[1,1,sqrt(6),1,1,1...] has p(2,x)=361-722x+527x^2-166x^3+19x^4, so a(2) = 361.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
A266805
Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-14, -90, -722, -4830, -33554, -228954, -1572110, -10768122, -73825010, -505954014, -3467991794, -23769625530, -162920337422, -1116670248090, -7653777913874, -52459758093534, -359564573392850, -2464492138756122, -16891880703949070, -115778671987640634
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x) = 19-14x-13x^2+2x^3+x^4, so a(0) = -14;
[1,sqrt(6),1,1,1,...] has p(1,x) = 19-90x+143x^2-90x^3+19x^4, so a(1) = -90;
[1,1,sqrt(6),1,1,1...] has p(2,x) = 361-722x+527x^2-166x^3+19x^4, so a(2) = -722.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
A266806
Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones. S.
Original entry on oeis.org
-13, 143, 527, 4859, 30119, 214847, 1450643, 10000367, 68393039, 469166939, 3214686407, 22036489343, 151033273907, 1035215971919, 7095427362959, 48632909524667, 333334588608743, 2284710128883647, 15659633909836499, 107332733533045679, 735669484346002127
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x)=19-14x-13x^2+2x^3+x^4, so a(0) = -13;
[1,sqrt(6),1,1,1,...] has p(1,x)=19-90x+143x^2-90x^3+19x^4, so a(1) = 143;
[1,1,sqrt(6),1,1,1...] has p(2,x)=361-722x+527x^2-166x^3+19x^4, so a(2) = 527.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
-
Vec((13-208*x-7*x^2+116*x^3+x^4)/(-1+5*x+15*x^2-15*x^3-5*x^4+x^5) + O(x^200)) \\ Altug Alkan, Jan 10 2015
A266807
Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones.
Original entry on oeis.org
2, -90, -166, -2166, -12010, -89598, -594910, -4127706, -28160326, -193357590, -1324392298, -9079876830, -62228230846, -426534794586, -2923470679270, -20037876860598, -137341361295850, -941352453457086, -6452123715212446, -44223519044857050
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x)=19-14x-13x^2+2x^3+x^4, so a(0) = 2;
[1,sqrt(6),1,1,1,...] has p(1,x)=19-90x+143x^2-90x^3+19x^4, so a(1) = -90;
[1,1,sqrt(6),1,1,1...] has p(2,x)=361-722x+527x^2-166x^3+19x^4, so a(2) = -166. ~
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
A265802
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,4,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
1, 11, 19, 59, 145, 389, 1009, 2651, 6931, 18155, 47521, 124421, 325729, 852779, 2232595, 5845019, 15302449, 40062341, 104884561, 274591355, 718889491, 1882077131, 4927341889, 12899948549, 33772503745, 88417562699, 231480184339, 606022990331, 1586588786641
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[4,1,1,1,1,...] = (7 + sqrt(5))/2 has p(0,x) = 11 - 7 x + x^2, so a(0) = 1;
[1,4,1,1,1,...] = (29 - sqrt(5))/22 has p(1,x) = 19 - 29 x + 11 x^2, so a(1) = 11;
[1,1,4,1,1,...] = (67 + sqrt(5))/38 has p(2,x) = 59 - 67 x + 19 x^2, so a(2) = 19.
-
List([0..30], n-> 6*Fibonacci(n+1)^2 - 5*(-1)^n); # G. C. Greubel, Dec 11 2019
-
I:=[1,11,19,59]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
with(combinat); seq(6*fibonacci(n+1)^2 - 5*(-1)^n, n=0..30); # G. C. Greubel, Dec 11 2019
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {4}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A265802 *)
Coefficient[t, x, 1] (* A265803 *)
Coefficient[t, x, 2] (* A236802 *)
Join[{1}, LinearRecurrence[{2, 2, -1}, {11, 19, 59}, 30]] (* Vincenzo Librandi, Jan 06 2016 *)
Table[6*Fibonacci[n+1]^2 - 5*(-1)^n, {n,0,30}] (* G. C. Greubel, Dec 11 2019 *)
-
Vec((1+9*x-5*x^2)/(1-2*x-2*x^2+x^3) + O(x^30)) \\ Altug Alkan, Jan 04 2016
-
vector(31, n, 6*fibonacci(n)^2 + 5*(-1)^n) \\ G. C. Greubel, Dec 11 2019
-
[6*fibonacci(n+1)^2 - 5*(-1)^n for n in (0..30)] # G. C. Greubel, Dec 11 2019
A265803
Coefficient of x in minimal polynomial of the continued fraction [1^n,4,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
-7, -29, -67, -185, -475, -1253, -3271, -8573, -22435, -58745, -153787, -402629, -1054087, -2759645, -7224835, -18914873, -49519771, -129644453, -339413575, -888596285, -2326375267, -6090529529, -15945213307, -41745110405, -109290117895, -286125243293
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[4,1,1,1,1,...] = (7 + sqrt(5))/2 has p(0,x) = 11 - 7 x + x^2, so a(0) = 1;
[1,4,1,1,1,...] = (29 - sqrt(5))/22 has p(1,x) = 19 - 29 x + 11 x^2, so a(1) = 11;
[1,1,4,1,1,...] = (67 + sqrt(5))/38 has p(2,x) = 59 - 67 x + 19 x^2, so a(2) = 19.
-
List([0..30], n-> (13*(-1)^n -12*Lucas(1,-1,2*n+3)[2])/5 ); # G. C. Greubel, Dec 12 2019
-
I:=[-7,-29,-67]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
with(combinat); f:=fibonacci; seq( 5*(-1)^n - 12*f(n+1)*f(n+2), n=0..30); # G. C. Greubel, Dec 12 2019
-
u[n_]:= Table[1, {k,n}]; t[n_]:= Join[u[n], {4}, {{1}}];
f[n_]:= FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A265802 *)
Coefficient[t, x, 1] (* A265803 *)
Coefficient[t, x, 2] (* A236802 *)
LinearRecurrence[{2,2,-1}, {-7,-29,-67}, 30] (* Vincenzo Librandi, Jan 06 2016 *)
-
Vec((-7-15*x+5*x^2)/(1-2*x-2*x^2+x^3) + O(x^30)) \\ Altug Alkan, Jan 04 2016
-
vector(31, n, f=fibonacci; -(5*(-1)^n + 12*f(n)*f(n+1)) ) \\ G. C. Greubel, Dec 12 2019
-
[(13*(-1)^n -12*lucas_number2(2*n+3,1,-1))/5 for n in (0..30)] # G. C. Greubel, Dec 12 2019
A265804
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,5,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
1, 19, 29, 95, 229, 619, 1601, 4211, 11005, 28831, 75461, 197579, 517249, 1354195, 3545309, 9281759, 24299941, 63618091, 166554305, 436044851, 1141580221, 2988695839, 7824507269, 20484825995, 53629970689, 140405086099, 367585287581, 962350776671
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[5,1,1,1,1,...] = (9+sqrt(5))/2 has p(0,x) = 19 - 9 x + x^2, so a(0) = 1;
[1,5,1,1,1,...] = (47-sqrt(5))/38 has p(1,x) = 29 - 47 x + 19 x^2, so a(1) = 19;
[1,1,5,1,1,...] = (105+sqrt(5))/58 has p(2,x) = 5 - 105 x + 29 x^2, so a(2) = 29.
-
I:=[1,19,29]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {5}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A265804 *)
Coefficient[t, x, 1] (* A265805 *)
Coefficient[t, x, 2] (* A236804 *)
LinearRecurrence[{2, 2, -1}, {1, 19, 29}, 30] (* Vincenzo Librandi, Jan 06 2016 *)
-
Vec((1+17*x-11*x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 07 2016
Comments