A265805
Coefficient of x in minimal polynomial of the continued fraction [1^n,5,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
-9, -47, -105, -295, -753, -1991, -5193, -13615, -35625, -93287, -244209, -639367, -1673865, -4382255, -11472873, -30036391, -78636273, -205872455, -538981065, -1411070767, -3694231209, -9671622887, -25320637425, -66290289415, -173550230793, -454360402991
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[5,1,1,1,1,...] = (9 + sqrt(5))/2 has p(0,x) = 19 - 9 x + x^2, so a(0) = 1;
[1,5,1,1,1,...] = (47 - sqrt(5))/38 has p(1,x) = 29 - 47 x + 19 x^2, so a(1) = 19;
[1,1,5,1,1,...] = (105 + sqrt(5))/58 has p(2,x) = 5 - 105 x + 29 x^2, so a(2) = 29.
-
I:=[-9,-47,-105]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {5}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A265804 *)
Coefficient[t, x, 1] (* A265805 *)
Coefficient[t, x, 2] (* A236804 *)
LinearRecurrence[{2, 2, -1}, {-9, -47, -105}, 30] (* Vincenzo Librandi, Jan 06 2016 *)
-
Vec((-9-29*x+7*x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 07 2016
A266699
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,1/2,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
4, 5, 1, 16, 29, 89, 220, 589, 1529, 4016, 10501, 27505, 71996, 188501, 493489, 1291984, 3382445, 8855369, 23183644, 60695581, 158903081, 416013680, 1089137941, 2851400161, 7465062524, 19543787429, 51166299745, 133955111824, 350699035709, 918141995321
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[1/2,1,1,1,1,...] = sqrt(5)/2 has p(0,x) = -5 + 4*x^2, so a(0) = 4;
[1,1/2,1,1,1,...] = (5 + 2*sqrt(5))/5 has p(1,x) = 1 - 10*x + 5*x^2, so a(1) = 5;
[1,1,1/2,1,1,...] = 6 - 2*sqrt(5) has p(2,x) = 16 - 12*x + x^2, so a(2) = 1.
-
I:=[4,5,1,16]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/2}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266699 *)
Coefficient[t, x, 1] (* A266700 *)
Coefficient[t, x, 2] (* A266699 *)
Join[{4}, LinearRecurrence[{2, 2, -1}, {5, 1, 16}, 30]] (* Vincenzo Librandi, Jan 06 2016 *)
-
Vec((4-3*x-17*x^2+8*x^3)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 07 2016
A266700
Coefficient of x in minimal polynomial of the continued fraction [1^n,1/2,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
0, -10, -12, -44, -102, -280, -720, -1898, -4956, -12988, -33990, -89000, -232992, -609994, -1596972, -4180940, -10945830, -28656568, -75023856, -196415018, -514221180, -1346248540, -3524524422, -9227324744, -24157449792, -63245024650, -165577624140
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[1/2,1,1,1,1,...] = sqrt(5)/2 has p(0,x) = -5 + 4*x^2, so a(0) = 0;
[1,1/2,1,1,1,...] = (5 + 2*sqrt(5))/5 has p(1,x) = 1 - 10*x + 5*x^2, so a(1) = -10;
[1,1,1/2,1,1,...] = 6 - 2*sqrt(5) has p(2,x) = 16 - 12*x + x^2, so a(2) = -12.
-
I:=[0,-10,-12]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/2}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266699 *)
Coefficient[t, x, 1] (* A266700 *)
Coefficient[t, x, 2] (* A266699 *)
LinearRecurrence[{2, 2, -1}, {0, -10, -12}, 30] (* Vincenzo Librandi, Jan 06 2016 *)
-
concat(0, Vec((-10*x+8*x^2)/(1-2*x-2*x^2+x^3) + O(x^100))) \\ Altug Alkan, Jan 07 2016
A266701
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,1/3,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
9, 11, 5, 41, 81, 239, 599, 1595, 4149, 10889, 28481, 74591, 195255, 511211, 1338341, 3503849, 9173169, 24015695, 62873879, 164605979, 430944021, 1128226121, 2953734305, 7732976831, 20245196151, 53002611659, 138762638789, 363285304745, 951093275409
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[1/3,1,1,1,...] = (-1 + 3 sqrt(5))/6 has p(0,x) = -11 + 3 x + 9 x^2, so a(0) = 9;
[1,1/3,1,1,...] = (25 + 9 sqrt(5))/22 has p(1,x) = 5 - 25 x + 11 x^2, so a(1) = 11;
[1,1,1/3,1,...] = (35 - 9 sqrt(5))/10 has p(2,x) = 41 - 35 x + 5 x^2, so a(2) = 5.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/3}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266701 *)
Coefficient[t, x, 1] (* A266702 *)
Coefficient[t, x, 2] (* A266701 *)
-
a(n) = round((2^(-n)*(-37*(-2)^n-2*(3-sqrt(5))^n*(2+3*sqrt(5))+(3+sqrt(5))^n*(-4+6*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
-
Vec((9-7*x-35*x^2+18*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
A266702
Coefficient of x in minimal polynomial of the continued fraction [1^n,1/3,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
3, -25, -35, -117, -279, -757, -1955, -5145, -13443, -35221, -92183, -241365, -631875, -1654297, -4330979, -11338677, -29685015, -77716405, -203464163, -532676121, -1394564163, -3651016405, -9558485015, -25024438677, -65514830979, -171520054297
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[1/3,1,1,1,...] = (-1 + 3 sqrt(5))/6 has p(0,x) = -11 + 3 x + 9 x^2, so a(0) = 9;
[1,1/3,1,1,...] = (25 + 9 sqrt(5))/22 has p(1,x) = 5 - 25 x + 11 x^2, so a(1) = 11;
[1,1,1/3,1,...] = (35 - 9 sqrt(5))/10 has p(2,x) = 41 - 35 x + 5 x^2, so a(2) = 5.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/3}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266701 *)
Coefficient[t, x, 1] (* A266702 *)
Coefficient[t, x, 2] (* A266701 *)
-
Vec((3-31*x+9*x^2+6*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
A266703
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,2/3,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
9, 11, 1, 29, 45, 149, 359, 971, 2511, 6605, 17261, 45221, 118359, 309899, 811295, 2124029, 5560749, 14558261, 38113991, 99783755, 261237231, 683927981, 1790546669, 4687712069, 12272589495, 32130056459, 84117579839, 220222683101, 576550469421, 1509428725205
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2/3,1,1,1,...] = (1+3*sqrt(5))/6 has p(0,x) = -11 - 3 x + 9 x^2, so a(0) = 9;
[1,2/3,1,1,...] = (19+9*sqrt(5))/22 has p(1,x) = -1 - 19 x + 11 x^2, so a(1) = 11;
[1,1,2/3,1,...] = (-17+9*sqrt(5))/2 has p(2,x) = -29 + 17 x + x^2, so a(2) = 1.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2/3}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266703 *)
Coefficient[t, x, 1] (* A266704 *)
Coefficient[t, x, 2] (* A266703 *)
-
Vec((9-7*x-39*x^2+14*x^3-4*x^4+2*x^5)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
A266704
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,2/3,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
-3, -19, 17, -75, -165, -463, -1181, -3123, -8145, -21355, -55877, -146319, -383037, -1002835, -2625425, -6873483, -17994981, -47111503, -123339485, -322906995, -845381457, -2213237419, -5794330757, -15169754895, -39714933885, -103975046803, -272210206481
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2/3,1,1,1,...] = (1+3*sqrt(5))/6 has p(0,x) = -11 - 3 x + 9 x^2, so a(0) = 9;
[1,2/3,1,1,...] = (19+9*sqrt(5))/22 has p(1,x) = -1 - 19 x + 11 x^2, so a(1) = 11;
[1,1,2/3,1,...] = (-17+9*sqrt(5))/2 has p(2,x) = -29 + 17 x + x^2, so a(2) = 1.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2/3}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266703 *)
Coefficient[t, x, 1] (* A266704 *)
Coefficient[t, x, 2] (* A266703 *)
-
Vec(-(3+13*x-61*x^2+74*x^3+68*x^4-34*x^5)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
A266705
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,sqrt(5),1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
1, 11, 11, 45, 101, 281, 719, 1899, 4955, 12989, 33989, 89001, 232991, 609995, 1596971, 4180941, 10945829, 28656569, 75023855, 196415019, 514221179, 1346248541, 3524524421, 9227324745, 24157449791, 63245024651, 165577624139, 433487847789, 1134885919205
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(5),1,1,1,1,...] = (-1+3*sqrt(5))/2 has p(0,x)=-11+x+x^2, so a(0) = 1;
[1,sqrt(5),1,1,1,...] = (23+3*sqrt(5))/22 has p(1,x)=11-23x+11x^2, so a(1) = 11;
[1,1,sqrt(5),1,1,...] = (45-3*sqrt(5))/22 has p(2,x)=45-45x+11x^2, so a(2) = 11.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[5]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266705 *)
Coefficient[t, x, 1] (* A266706 *)
Coefficient[t, x, 2] (* A266705 *)
-
Vec((1+9*x-13*x^2+2*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
A266706
Coefficient of x in minimal polynomial of the continued fraction [1^n,sqrt(5),1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
1, -23, -45, -135, -337, -899, -2337, -6135, -16045, -42023, -110001, -288003, -753985, -1973975, -5167917, -13529799, -35421457, -92734595, -242782305, -635612343, -1664054701, -4356551783, -11405600625, -29860250115, -78175149697, -204665198999
Offset: 1
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(5),1,1,1,1,...] = (-1+3*sqrt(5))/2 has p(0,x)=-11+x+x^2, so a(0) = 1;
[1,sqrt(5),1,1,1,...] = (23+3*sqrt(5))/22 has p(1,x)=11-23x+11x^2, so a(1) = 11;
[1,1,sqrt(5),1,1,...] = (45-3* sqrt(5))/22 has p(2,x)=45-45x+11x^2, so a(2) = 11.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[5]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266705 *)
Coefficient[t, x, 1] (* A266706 *)
Coefficient[t, x, 2] (* A266705 *)
LinearRecurrence[{2,2,-1},{1,-23,-45,-135},40] (* Harvey P. Dale, Jul 30 2017 *)
-
Vec(x*(1-25*x-x^2+2*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
A266707
Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,tau,1,1,1,...], where 1^n means n ones and tau = golden ratio = (1 + sqrt(5))/2.
Original entry on oeis.org
1, 5, 4, 19, 41, 116, 295, 781, 2036, 5339, 13969, 36580, 95759, 250709, 656356, 1718371, 4498745, 11777876, 30834871, 80726749, 211345364, 553309355, 1448582689, 3792438724, 9928733471, 25993761701, 68052551620, 178163893171, 466439127881, 1221153490484
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[tau,1,1,1,1,...] = sqrt(5) has p(0,x) = -5 + x^2, so a(0) = 1;
[1,tau,1,1,1,...] = (5 + sqrt(5))/5 has p(1,x) = 4 - 10 x + 5 x^2, so a(1) = 5;
[1,1,tau,1,1,...] = (9 - sqrt(5))/4 has p(2,x) = 19 - 18 x + 4 x^2, so a(2) = 4.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {GoldenRatio}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A266707 *)
Coefficient[t, x, 1] (* A266708 *)
Coefficient[t, x, 2] (* A266707 *)
-
Vec((1+3*x-8*x^2+2*x^3)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 29 2016
Comments