cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A188163 Smallest m such that A004001(m) = n.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 20, 22, 23, 25, 28, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 52, 55, 59, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 87, 88, 89, 91, 92, 94, 97, 98, 100, 103, 107, 108, 110, 113, 117, 122
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2011

Keywords

Comments

How is this related to A088359? - R. J. Mathar, Jan 09 2013
It is not hard to show that a(n) exists for all n, and in particular a(n) < 2^n. - Charles R Greathouse IV, Jan 13 2013
From Antti Karttunen, Jan 10 & 18 2016: (Start)
Positions of records in A004001. After 1 the positions where A004001 increases (by necessity by one).
An answer to the question of R. J. Mathar above: This sequence is equal to A088359 with prepended 1. This follows because at each of its unique values (terms of A088359), A004001 must grow, but it can grow nowhere else. See Kubo and Vakil paper and especially the illustrations of Q and R-trees on pages 229-230 (pages 5 & 6 in PDF) and also in sequence A265332.
Obviously A004001 can obtain unique values only at points which form a subset (A266399) of this sequence.
(End)

Crossrefs

Equal to A088359 with prepended 1.
Column 1 of A265901, Row 1 of A265903.
Cf. A051135 (first differences).
Cf. A087686 (complement, apart from the initial 1).
Cf. A004001 (also the least monotonic left inverse of this sequence).
Cf. A266399 (a subsequence).

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a188163 n = succ $ fromJust $ elemIndex n a004001_list
    
  • Magma
    h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n - Self(n-1)): n in [1..500]]; // h=A004001
    A188163:= function(n)
       for j in [1..2*n+1] do
           if h[j] eq n then return j; end if;
       end for;
    end function;
    [A188163(n): n in [1..100]]; // G. C. Greubel, May 20 2024
    
  • Maple
    A188163 := proc(n)
        for a from 1 do
            if A004001(a) = n then
                return a;
            end if;
        end do:
    end proc: # R. J. Mathar, May 15 2013
  • Mathematica
    h[1] = 1; h[2] = 1; h[n_] := h[n] = h[h[n-1]] + h[n - h[n-1]];
    a[n_] := For[m = 1, True, m++, If[h[m] == n, Return[m]]];
    Array[a, 64] (* Jean-François Alcover, Jan 27 2018 *)
  • SageMath
    @CachedFunction
    def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1)) # h=A004001
    def A188163(n):
        for j in range(1,2*n+2):
            if h(j)==n: return j
    [A188163(n) for n in range(1,101)] # G. C. Greubel, May 20 2024
  • Scheme
    (define A188163 (RECORD-POS 1 1 A004001))
    ;; Code for A004001 given in that entry. Uses also my IntSeq-library. - Antti Karttunen, Jan 18 2016
    

Formula

Other identities. For all n >= 1:
A004001(a(n)) = n and A004001(m) < n for m < a(n).
A051135(n) = a(n+1) - a(n).

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).

Examples

			The top left corner of the array:
   1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
   3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
   5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
   6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
   9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
  10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
  11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
  13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
  17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
  18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
  19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
  20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
  22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
  23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
  25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
  28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
  ...
		

Crossrefs

Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Cf. A162598 (row index of n in array), A265332 (column index of n in array).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).

A267112 Permutation of natural numbers: a(1) = 1; a(2n) = A087686(1+a(n)), a(2n+1) = A088359(a(n)), where A088359 and A087686 = numbers that occur only once (resp. more than once) in A004001.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 8, 9, 12, 10, 15, 13, 14, 11, 16, 17, 21, 18, 27, 22, 24, 19, 31, 28, 29, 23, 30, 25, 26, 20, 32, 33, 38, 34, 48, 39, 42, 35, 58, 49, 51, 40, 54, 43, 45, 36, 63, 59, 60, 50, 61, 52, 53, 41, 62, 55, 56, 44, 57, 46, 47, 37, 64, 65, 71, 66, 86, 72, 76, 67, 106, 87, 90, 73, 96, 77, 80, 68, 121, 107, 109, 88
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2016

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A087686(1+n), and each right hand child as A088359(n), when their parent contains n:
|
...................1...................
2 3
4......../ \........5 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
8 9 12 10 15 13 14 11
16 17 21 18 27 22 24 19 31 28 29 23 30 25 26 20
etc.
The level k of the tree contains all numbers of binary width k, like many base-2 related permutations (A003188, A054429, etc). For a proof, see A267110, which gives the contents of each parent node (for node containing n).
A276442 shows the mirror-image of the same tree.

Crossrefs

Inverse: A267111.
Similar or related permutations: A003188, A054429, A276442, A233276, A233278, A276344, A276346, A276446.
Cf. also permutations A266411, A266412 and arrays A265901, A265903.

Formula

a(1) = 1; after which, a(2n) = A087686(1+a(n)), a(2n+1) = A088359(a(n)).
As a composition of other permutations:
a(n) = A276442(A054429(n)).
a(n) = A276344(A233276(n)).
a(n) = A276346(A233278(n)).
a(n) = A276446(A003188(n)).
Other identities. For all n >= 0:
a(2^n) = 2^n. [Follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper.]
a(A000225(n)) = A006127(n), i.e., a((2^(n+1)) - 1) = 2^n + n. [Numbers at the right edge.]

A162598 Ordinal transform of A265332.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 2, 1, 5, 6, 7, 3, 8, 4, 2, 1, 9, 10, 11, 12, 5, 13, 14, 6, 15, 7, 3, 16, 8, 4, 2, 1, 17, 18, 19, 20, 21, 9, 22, 23, 24, 10, 25, 26, 11, 27, 12, 5, 28, 29, 13, 30, 14, 6, 31, 15, 7, 3, 32, 16, 8, 4, 2, 1, 33, 34, 35, 36, 37, 38, 17, 39, 40, 41, 42, 18, 43, 44, 45, 19, 46, 47
Offset: 1

Views

Author

Keywords

Comments

This is a fractal sequence.
It appears that each group of 2^k terms starts with 1 and ends with the remaining powers of two from 2^k down to 2^1.
From Antti Karttunen, Jan 09-12 2016: (Start)
This is ordinal transform of A265332, which is modified A051135 (with a(1) = 1, instead of 2). - after Franklin T. Adams-Watters' original definition for this sequence.
A000079 (powers of 2) indeed gives the positions of ones in this sequence. This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 of PDF), which together also imply the pattern observed above, more clearly represented as:
a(2) = 1.
a(3..4) = 2, 1.
a(6..8) = 4, 2, 1.
a(13..16) = 8, 4, 2, 1.
a(28..31) = 16, 8, 4, 2, 1.
etc.
(End)

Crossrefs

Row index of A265901, column index of A265903.
Cf. A265332 (corresponding other index).
Cf. A000079 (positions of ones).
Cf. A000225 (from the term 3 onward the positions of 2's).
Cf. A000325 (from its third term 5 onward the positions of 3's, which occur always as the last term before the next descending subsequence of powers of two).

Programs

  • Mathematica
    terms = 100;
    h[1] = 1; h[2] = 1;
    h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]];
    t = Array[h, 2*terms];
    A051135 = Take[Transpose[Tally[t]][[2]], terms];
    b[_] = 1;
    a[n_] := a[n] = With[{t = If[n == 1, 1, A051135[[n]]]}, b[t]++];
    Array[a, terms] (* Jean-François Alcover, Dec 19 2021, after Robert G. Wilson v in A051135 *)

Formula

Let b(1) = 1, b(n) = A051135(n) for n > 1. Then a(n) is the number of b(k) that equal b(n) for 1 <= k <= n: sum( 1, 1<=k<=n and a(k)=a(n) ).
If A265332(n) = 1, then a(n) = A004001(n), otherwise a(n) = a(A080677(n)-1) = a(n - A004001(n)). - Antti Karttunen, Jan 09 2016

Extensions

Name amended by Antti Karttunen, Jan 09 2016

A276441 Permutation of natural numbers: a(1) = 1, a(A087686(1+n)) = 1 + 2*a(n), a(A088359(n)) = 2*a(n), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

Original entry on oeis.org

1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 8, 13, 10, 9, 11, 31, 30, 28, 24, 16, 29, 26, 20, 25, 18, 17, 27, 22, 21, 19, 23, 63, 62, 60, 56, 48, 32, 61, 58, 52, 40, 57, 50, 36, 49, 34, 33, 59, 54, 44, 53, 42, 41, 51, 38, 37, 35, 55, 46, 45, 43, 39, 47, 127, 126, 124, 120, 112, 96, 64, 125, 122, 116, 104, 80, 121, 114, 100, 72, 113, 98
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2016

Keywords

Crossrefs

Inverse: A276442.
Related or similar permutations: A006068, A054429, A233275, A233277, A267111, A276343, A276345, A276443.
Cf. also arrays A265901, A265903.

Programs

Formula

a(1) = 1; for n > 1, if A093879(n-1) = 0 [when n is in A087686], a(n) = 1 + 2*a(A080677(n)-1), otherwise [when n is in A088359], a(n) = 2*a(A004001(n)-1).
As a composition of other permutations:
a(n) = A054429(A267111(n)).
a(n) = A233277(A276343(n)).
a(n) = A233275(A276345(n)).
a(n) = A006068(A276443(n)).
Other identities. For all n >= 1:
a(A000079(n-1)) = A000225(n).

A266411 a(1) = 1, after which each a(n) = (A004074(n)+1)-th number selected from those not yet in the sequence.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 7, 5, 10, 12, 14, 13, 16, 15, 11, 9, 18, 20, 22, 24, 23, 26, 28, 27, 30, 29, 25, 32, 31, 21, 19, 17, 34, 36, 38, 40, 42, 41, 44, 46, 48, 47, 50, 52, 51, 54, 53, 49, 56, 58, 57, 60, 59, 55, 62, 61, 45, 43, 64, 63, 39, 37, 35, 33, 66, 68, 70, 72, 74, 76, 75, 78, 80, 82, 84, 83, 86, 88, 90, 89, 92, 94, 93, 96, 95, 91
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2015

Keywords

Crossrefs

Inverse: A266412.
Cf. A004074.
Similar permutations in Quetian style: A119435, A126917, A246165, A266413.
Cf. also A265901, A265903.

Programs

  • Mathematica
    f[n_] := Block[{a = {1}, g, b = Range[2, n]}, g[1] = g[2] = 1; g[x_] := g[x] = g[g[x - 1]] + g[x - g[x - 1]]; Do[{AppendTo[a, #[[1, 1]]], Set[b, Last@ #]} &@ If[# > Length@ b, Break[], TakeDrop[b, {#}]] &@ (2 g[#] - # + 1) &@ k, {k, 2, n}]; a]; f@ 97 (* Michael De Vlieger, Dec 29 2015, Version 10.2, based on Harvey P. Dale at A004074 *)
Previous Showing 11-16 of 16 results.