cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 02 2022

Keywords

Comments

This is well-defined because positive integers have a unique factorization into powers of nonunit squarefree numbers with distinct exponents that are powers of 2.
Each (infinite) row is the lexicographically earliest with product n and terms that are a (2^k)-th power for all k.
For all k, column k is column k+1 of A060176 conjugated by A225546.

Examples

			The top left corner of the array:
  n/k |   0   1   2   3   4   5   6
------+------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,
    2 |   2,  1,  1,  1,  1,  1,  1,
    3 |   3,  1,  1,  1,  1,  1,  1,
    4 |   1,  4,  1,  1,  1,  1,  1,
    5 |   5,  1,  1,  1,  1,  1,  1,
    6 |   6,  1,  1,  1,  1,  1,  1,
    7 |   7,  1,  1,  1,  1,  1,  1,
    8 |   2,  4,  1,  1,  1,  1,  1,
    9 |   1,  9,  1,  1,  1,  1,  1,
   10 |  10,  1,  1,  1,  1,  1,  1,
   11 |  11,  1,  1,  1,  1,  1,  1,
   12 |   3,  4,  1,  1,  1,  1,  1,
   13 |  13,  1,  1,  1,  1,  1,  1,
   14 |  14,  1,  1,  1,  1,  1,  1,
   15 |  15,  1,  1,  1,  1,  1,  1,
   16 |   1,  1, 16,  1,  1,  1,  1,
   17 |  17,  1,  1,  1,  1,  1,  1,
   18 |   2,  9,  1,  1,  1,  1,  1,
   19 |  19,  1,  1,  1,  1,  1,  1,
   20 |   5,  4,  1,  1,  1,  1,  1,
		

Crossrefs

Sequences used in a formula defining this sequence: A000188, A007913, A060176, A225546.
Cf. A007913 (column 0), A335324 (column 1).
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Number of nonunit terms in row n is A331591(n); their positions are given (in reversed binary) by A267116(n); the first nonunit is in column A352080(n)-1 and the infinite run of 1's starts in column A299090(n).

Programs

  • PARI
    up_to = 105;
    A352780sq(n, k) = if(k==0, core(n), A352780sq(core(n, 1)[2], k-1)^2);
    A352780list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A352780sq(a-col,col))); (v); };
    v352780 = A352780list(up_to);
    A352780(n) = v352780[n];

Formula

A(n,0) = A007913(n); for k > 0, A(n,k) = A(A000188(n), k-1)^2.
A(n,k) = A225546(A060176(A225546(n), k+1)).
A331591(A(n,k)) <= 1.

A334110 The squares of squarefree numbers (A062503), ordered lexicographically according to their prime factors. a(n) = Product_{k in I} prime(k+1)^2, where I are the indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 4, 9, 36, 25, 100, 225, 900, 49, 196, 441, 1764, 1225, 4900, 11025, 44100, 121, 484, 1089, 4356, 3025, 12100, 27225, 108900, 5929, 23716, 53361, 213444, 148225, 592900, 1334025, 5336100, 169, 676, 1521, 6084, 4225, 16900, 38025, 152100, 8281, 33124, 74529, 298116, 207025, 828100, 1863225, 7452900, 20449, 81796, 184041
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, May 01 2020

Keywords

Comments

For the lexicographic ordering, the prime factors must be written in nonincreasing order. If we write the factors in nondecreasing order, we get a lexicographically ordered set with an order type that is greater than a natural number index - the resulting sequence does not include all qualifying numbers. (Note also that the symbols used for the lexicographic order are the prime numbers, not their digits.)
a(n) is the n-th power of 4 in the monoid defined in A331590.
Conjecture: a(n) is the position of the first occurrence of n in A334109.

Examples

			The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic ordering. The list starts with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
    1 = .
    4 = 2*2.
    9 = 3*3.
   36 = 3*3*2*2.
   25 = 5*5.
  100 = 5*5*2*2.
  225 = 5*5*3*3.
  900 = 5*5*3*3*2*2.
   49 = 7*7.
  196 = 7*7*2*2.
  441 = 7*7*3*3.
		

Crossrefs

Cf. A000079, A019565 (square roots), A048675, A097248, A225546, A267116, A332382, A334109 (a left inverse).
Column 2 of A329332. Permutation of A062503.
After 1, the right children of the leftmost edge of A334860, or respectively, the left children of the rightmost edge of A334866.
Subsequences: A001248, A061742, A166329.
Subsequence of A052330.
A003961, A003987, A059897, A331590 are used to express relationship between terms of this sequence.

Programs

  • Mathematica
    Array[If[# == 0, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[3^#]]] &, 51, 0] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A334110(n) = { my(p=2,m=1); while(n, if(n%2, m *= p^2); n >>= 1; p = nextprime(1+p)); (m); };

Formula

a(n) = A019565(n)^2.
For n >= 1, a(A000079(n-1)) = A001248(n).
For all n >= 0, A334109(a(n)) = n.
a(n+k) = A331590(a(n), a(k)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(n) = A225546(3^n).
a(2n) = A003961(a(n)).
a(2n+1) = 4 * a(2n).
a(2^k-1) = A061742(k).
A267116(a(n)) = 2.
A048675(a(n)) = 2n.
A097248(a(n)) = A332382(n) = A019565(2n).

A340675 Exponential of Mangoldt function conjugated by Tek's flip: a(n) = A225546(A014963(A225546(n))).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 16, 2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 16, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 01 2021

Keywords

Comments

Nonunit squarefree numbers take the value 2, other nonsquares take the value 1, and squares take the square of the value taken by their square root.

Crossrefs

Sequences used in a definition of this sequence: A014963, A048298, A225546, A267116, A297108, A340676.
Positions of 1's: {1} U A340681, 2's: A005117 \ {1}, of 4's: A062503 \ {1}, of 16's: A113849.
Positions of terms > 1: A340682, of terms > 2: A340674.
Sequences used to express relationship between terms of this sequence: A003961, A331590.

Programs

  • PARI
    A340675(n) = if(1==n,n,if(issquarefree(n), 2, if(!issquare(n), 1, A340675(sqrtint(n))^2)));

Formula

a(n) = 2^A048298(A267116(n)).
If A340673(n) = 1, then a(n) = 1, otherwise a(n) = 2^A297108(A340673(n)).
If A340676(n) = 0, then a(n) = 1, otherwise a(n) = 2^(2^(A340676(n)-1)).
If n = s^(2^k), s squarefree >= 2, k >= 0, then a(n) = 2^(2^k), otherwise a(n) = 1.
For n, k > 1, if a(n) = a(k) then a(A331590(n, k)) = a(n), otherwise a(A331590(n, k)) = 1.
a(n^2) = a(n)^2.
a(A003961(n)) = a(n).
a(A051144(n)) = 1.
a(n) = 1 if and only if A331591(n) <> 1, otherwise a(n) = 2^A051903(n).

A267113 Bitwise-OR of the exponents of all 4k+1 primes in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			For n = 65 = 5 * 13 = (4+1)^1 * ((3*4)+1)^1, bitwise-or of 1 and 1 is 1, thus a(65) = 1.
		

Crossrefs

Cf. A004144 (indices of zeros), A009003 (of nonzeros).
Differs from both A046080 and A083025 for the first time at n=65, which here a(65) = 1.

Formula

a(n) = A267116(A170818(n)).
Other identities. For all n >= 0:
a(n) = a(A170818(n)). [The result depends only on the prime factors of the form 4k+1.]
a(n) <= A083025(n).

A091862 a(n) = 1 if the sum of all exponents of the prime-factorization of n has no carries when summed in base 2, or a(n) = 0 if there are any carries.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Leroy Quet, Mar 13 2004

Keywords

Comments

Characteristic function for A268375. - Antti Karttunen, Nov 23 2017

Examples

			a(12) = 1 because 12 = 2^2 *3^1 and, in base 2, 2 = '10', 1 = '1' and '10' and '1' have their ones in different positions. But a(24) = 0 because 24 = 2^3 *3^1 and in base 2 3 = '11', 1 = '1', which both share a rightmost one.
		

Crossrefs

Cf. A268375 (positions of ones), A268376 (of zeros).

Programs

  • Mathematica
    f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; a[n_] := Boole[UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 23 2023 *)
  • PARI
    a(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);} \\ Amiram Eldar, Dec 23 2023

Formula

If A268374(n) = 0, then a(n) = 1, 0 otherwise. - Antti Karttunen, Nov 23 2017

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A334748 Let p be the smallest odd prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller odd primes.

Original entry on oeis.org

3, 6, 5, 12, 15, 10, 21, 24, 27, 30, 33, 20, 39, 42, 7, 48, 51, 54, 57, 60, 35, 66, 69, 40, 75, 78, 45, 84, 87, 14, 93, 96, 55, 102, 105, 108, 111, 114, 65, 120, 123, 70, 129, 132, 135, 138, 141, 80, 147, 150, 85, 156, 159, 90, 165, 168, 95, 174, 177, 28, 183, 186, 189
Offset: 1

Views

Author

Peter Munn, May 09 2020

Keywords

Comments

A permutation of A028983.
A007417 (which has asymptotic density 3/4) lists index n such that a(n) = 3n. The sequence maps the terms of A007417 1:1 onto A145204\{0}, defining a bijection between them.
Similarly, bijections are defined from the odd numbers (A005408) to the nonsquare odd numbers (A088828), from the positive even numbers (A299174) to A088829, from A003159 to the nonsquares in A003159, and from A325424 to the nonsquares in A036668. The latter two bijections are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.

Examples

			84 = 21*4 has squarefree part 21 (and square part 4). The smallest odd prime absent from 21 = 3*7 is 5 and the product of all smaller odd primes is 3. So a(84) = 84*5/3 = 140.
		

Crossrefs

Permutation of A028983.
Row 3, and therefore column 3, of A331590. Cf. A334747 (row 2).
A007913, A034386, A225546, A284723 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A003961, A019565, A070826; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016051, A145204\{0}, A329575.
Bijections are defined that relate to A003159, A005408, A007417, A036668, A088828, A088829, A299174, A325424.

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=3, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * p / (A034386(p-1)/2), where p = A284723(A007913(n)).
a(n) = A334747(A334747(n)).
a(n) = A331590(3, n) = A225546(4 * A225546(n)).
a(2*n) = 2 * a(n).
a(A019565(n)) = A019565(n+2).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = A003961(A334747(n)).
a(A070826(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 2.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A007417(n)) = A145204(n+1) = 3 * A007417(n).

A329616 Bitwise-OR of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3, 3, 1, 5, 2, 3, 3, 3, 1, 3, 1, 5, 3, 3, 3, 6, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 1, 5, 2, 3, 3, 3, 1, 7, 3, 5, 3, 3, 1, 7, 1, 3, 3, 6, 3, 3, 1, 3, 3, 3, 1, 7, 1, 3, 3, 3, 3, 3, 1, 5, 4, 3, 1, 7, 3, 3, 3, 5, 1, 7, 3, 3, 3, 3, 3, 7, 1, 3, 3, 6, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Positions of records are: 1, 2, 4, 6, 16, 24, 36, 54, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 65536, ..., conjectured also to be the positions of the first occurrence of each n.

Crossrefs

Programs

Formula

a(n) = A267116(A108951(n)) = A267116(A329600(n)).
a(n) >= A007814(n).
a(n) >= A329615(n).
a(n) >= A329647(n).

A331593 Numbers k that have the same number of distinct prime factors as A225546(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121, 124, 127, 131, 135, 136, 137, 139, 144, 147, 148, 149
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

Numbers k for which A001221(k) = A331591(k).
Numbers k that have the same number of terms in their factorization into powers of distinct primes as in their factorization into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between the two factorizations and A225546.
If k is included, then all such x that A046523(x) = k are also included, i.e., all numbers with the same prime signature as k. Notably, primes (A000040) are included, but squarefree semiprimes (A006881) are not.
k^2 is included if and only if k is included, for example A001248 is included, but A085986 is not.

Examples

			There are 2 terms in the factorization of 36 into powers of distinct primes, which is 36 = 2^2 * 3^2 = 4 * 9; but only 1 term in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 36 = 6^(2^1). So 36 is not included.
There are 2 terms in the factorization of 40 into powers of distinct primes, which is 40 = 2^3 * 5^1 = 8 * 5; and also 2 terms in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 40 = 10^(2^0) * 2^(2^1) = 10 * 4. So 40 is included.
		

Crossrefs

Sequences with related definitions: A001221, A331591, A331592.
Subsequences of complement: A006881, A056824, A085986, A120944, A177492.

Programs

  • Mathematica
    Select[Range@ 150, Equal @@ PrimeNu@ {#, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]} &] (* Michael De Vlieger, Jan 26 2020 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    k=0; n=0; while(k<105, n++; if(omega(n)==A331591(n), k++; print1(n,", ")));

Formula

{a(n)} = {k : A001221(k) = A000120(A267116(k))}.

A337534 Nontrivial squares together with nonsquares whose square part's square root is in the sequence.

Original entry on oeis.org

4, 9, 16, 25, 32, 36, 48, 49, 64, 80, 81, 96, 100, 112, 121, 144, 160, 162, 169, 176, 196, 208, 224, 225, 240, 243, 256, 272, 289, 304, 324, 336, 352, 361, 368, 400, 405, 416, 441, 464, 480, 484, 486, 496, 512, 528, 529, 544, 560, 567, 576, 592, 608, 624, 625
Offset: 1

Views

Author

Peter Munn, Aug 31 2020

Keywords

Comments

The appearance of a number is determined by its prime signature.
No terms are squarefree, as the square root of the square part of a squarefree number is 1.
If the square part of k is a 4th power, other than 1, k appears.
Every positive integer k is the product of a unique subset S_k of the terms of A050376, which are arranged in array form in A329050 (primes in column 0, squares of primes in column 1, 4th powers of primes in column 2 and so on). k is in this sequence if and only if there is m >= 1 such that column m of A329050 contains a member of S_k, but column m - 1 does not.

Examples

			4 is square and nontrivial (not 1), so 4 is in the sequence.
12 = 3 * 2^2 is nonsquare, but has square part 4, whose square root (2) is not in the sequence. So 12 is not in the sequence.
32 = 2 * 4^2 is nonsquare, and has square part 16, whose square root (4) is in the sequence. So 32 is in the sequence.
		

Crossrefs

Complement of A337533.
Subsequences: A000290\{0,1}, A082294.
Subsequence of: A013929, A162643.
A209229, A267116 are used in a formula defining this sequence.

Programs

  • Maple
    A337534 := proc(n)
        option remember ;
        if n =1  then
            4;
        else
            for a from procname(n-1)+1 do
                if A209229(A267116(a)+1) = 0 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A337534(n),n=1..80) ; # R. J. Mathar, Feb 16 2021
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[625], ! pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)

Formula

Numbers k such that A209229(A267116(k) + 1) = 0.
A008833(a(n)) > 1.

A340676 If n is of the form s^(2^e), where s is a squarefree number, and e >= 0, then a(n) = 1+e, otherwise a(n) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Positions of zeros: {1} U A340681, of 1's: A005117 \ {1}, of 2's: A062503 \ {1}, of 3's: A113849.
Positions of nonzero terms: A340682, of terms > 1: A340674.

Programs

  • Mathematica
    a[1] = 0; a[n_] := If[Length[(u = Union[FactorInteger[n][[;; , 2]]])] == 1 && u[[1]] == 2^(e = IntegerExponent[u[[1]], 2]), e + 1, 0]; Array[a, 100] (* Amiram Eldar, Feb 10 2021 *)
  • PARI
    A001511(n) = 1+valuation(n,2);
    A209229(n) = (n && !bitand(n,n-1));
    A104117(n) = (A209229(n)*A001511(n));
    A267116(n) = if(n>1, fold(bitor, factor(n)[, 2]), 0);
    A340676(n) = if(1==n,0,A104117(A267116(n)));

Formula

a(n) = A297109(A225546(n)).
For n > 1, a(n) = A104117(A267116(n)). - Peter Munn, Feb 05 2021
Previous Showing 21-30 of 35 results. Next