cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A385572 Number of subsets of {1..n} with the same number of maximal runs (increasing by 1) as maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 207, 394, 739, 1398, 2687, 5152, 9891, 19128, 37039, 71754, 139459, 271522, 528999, 1032308, 2017291, 3945186, 7723203, 15134440, 29679407, 58245068, 114389683, 224796210, 442021743, 869658304, 1711914351, 3371515306
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2025

Keywords

Comments

Also the number of subsets of {1..n} with the same number of adjacent elements increasing by 1 as adjacent elements increasing by more than 1.

Examples

			The set {2,3,5,6,8} has maximal runs ((2,3),(5,6),(8)) and maximal anti-runs ((2),(3,5),(6,8)) so is counted under a(8).
The a(0) = 1 through a(6) = 19 subsets:
  {}  {}   {}   {}   {}       {}       {}
      {1}  {1}  {1}  {1}      {1}      {1}
           {2}  {2}  {2}      {2}      {2}
                {3}  {3}      {3}      {3}
                     {4}      {4}      {4}
                     {1,2,4}  {5}      {5}
                     {1,3,4}  {1,2,4}  {6}
                              {1,2,5}  {1,2,4}
                              {1,3,4}  {1,2,5}
                              {1,4,5}  {1,2,6}
                              {2,3,5}  {1,3,4}
                              {2,4,5}  {1,4,5}
                                       {1,5,6}
                                       {2,3,5}
                                       {2,3,6}
                                       {2,4,5}
                                       {2,5,6}
                                       {3,4,6}
                                       {3,5,6}
		

Crossrefs

The LHS is counted by A034839 (for partitions A384881, strict A116674), rank statistic A069010.
The case containing n + 1 is A217615.
The RHS is counted by A384893 or A210034 (for partitions A268193, strict A384905), rank statistic A384890.
Subsets of this type are ranked by A385575.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 2, 3, 4, 7][n+1], ((3*n-4)*a(n-1)-
          (3*n-5)*a(n-2)+(5*n-12)*a(n-3)-2*(4*n-11)*a(n-4)+4*(n-3)*a(n-5))/(n-1))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 06 2025
  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2==#1+1&]]==Length[Split[#,#2!=#1+1&]]&]],{n,0,10}]
  • PARI
    a(n)=polcoef([1,1,1]*[x,0,0;x,x^2,1;0,x,x]^n*[1,0,0]~,n) \\ Christian Sievers, Jul 06 2025

Formula

Let M be the matrix [1,0,0; 1,x,1/x; 0,1,1]. Then a(n) is the sum of the constant terms of the entries in the left column of M^n. - Christian Sievers, Jul 06 2025

Extensions

a(21) and beyond from Christian Sievers, Jul 06 2025

A384907 Number of permutations of {1..n} with all distinct lengths of maximal anti-runs (not increasing by 1).

Original entry on oeis.org

1, 1, 1, 5, 17, 97, 587, 4291, 33109, 319967, 3106433, 35554459, 419889707, 5632467097, 77342295637, 1201240551077, 18804238105133, 328322081898745, 5832312989183807, 113154541564902427, 2229027473451951265, 47899977701182298255, 1037672943682453127645
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2025

Keywords

Examples

			The permutation (1,2,4,3,5,7,8,6,9) has maximal anti-runs ((1),(2,4,3,5,7),(8,6,9)), with lengths (1,5,3), so is counted under a(9).
The a(0) = 1 through a(4) = 17 permutations:
  ()  (1)  (2,1)  (1,3,2)  (1,2,4,3)
                  (2,1,3)  (1,3,2,4)
                  (2,3,1)  (1,4,2,3)
                  (3,1,2)  (1,4,3,2)
                  (3,2,1)  (2,1,3,4)
                           (2,1,4,3)
                           (2,3,1,4)
                           (2,4,1,3)
                           (2,4,3,1)
                           (3,1,4,2)
                           (3,2,1,4)
                           (3,2,4,1)
                           (3,4,2,1)
                           (4,1,3,2)
                           (4,2,1,3)
                           (4,3,1,2)
                           (4,3,2,1)
		

Crossrefs

For subsets instead of permutations we have A384177.
For strict partitions we have A384880, for runs A384178.
For partitions we have A384885, for runs A384884.
For runs instead of anti-runs we have A384891.
A010027 counts permutations by maximal anti-runs, for runs A123513.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
  • PARI
    a(n)=if(n,my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=polcoef(prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(d+1))/(1-x))),n,y)); sum(i=1,d,b(n+1-i)*i!*polcoef(p,i)),1) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{k=1..n} ( T(n,k) * A000255(n-k) ) for n>=1, where T(n,k) is the number of compositions of n into k distinct parts (cf. A072574).

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025

A385215 Number of maximal sparse submultisets of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sparse submultisets of the prime indices of n = 8 are {{},{1},{1,1},{1,1,1}}, with maximization {{1,1,1}}. So a(8) = 1.
The sparse submultisets of the prime indices of n = 462 are {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with maximization {{1,4},{1,5},{2,4},{2,5}}, so a(462) = 4.
The prime indices of n together their a(n) maximal sparse submultisets for n = 1, 6, 210, 462, 30030, 46410:
  {}  {1,2}  {1,2,3,4}  {1,2,4,5}  {1,2,3,4,5,6}  {1,2,3,4,6,7}
  ------------------------------------------------------------
  {}   {1}     {1,3}      {1,4}       {2,5}          {1,3,6}
       {2}     {1,4}      {1,5}       {1,3,5}        {1,3,7}
               {2,4}      {2,4}       {1,3,6}        {1,4,6}
                          {2,5}       {1,4,6}        {1,4,7}
                                      {2,4,6}        {2,4,6}
                                                     {2,4,7}
		

Crossrefs

This is the maximal case of A166469.
For binary instead of prime indices we have A384883, maximal case of A245564.
The greatest number whose prime indices are one of these submultisets is A385216.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A384887 counts partitions with equal lengths of gapless runs, distinct A384884.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    maxq[els_]:=Select[els,Not[Or@@Table[Divisible[oth,#],{oth,DeleteCases[els,#]}]]&];
    Table[Length[maxq[Select[Divisors[n],FreeQ[Differences[prix[#]],1]&]]],{n,30}]

Formula

a(n) <= A166469(n).

A385575 Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 16, 19, 22, 25, 26, 32, 35, 38, 44, 49, 50, 52, 64, 67, 70, 76, 87, 88, 91, 93, 97, 98, 100, 104, 107, 109, 117, 128, 131, 134, 140, 151, 152, 155, 157, 167, 174, 176, 179, 182, 185, 186, 193, 194, 196, 200, 203, 205, 208, 211, 214, 217
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
    1:       1 ~ {1}
    2:      10 ~ {2}
    4:     100 ~ {3}
    8:    1000 ~ {4}
   11:    1011 ~ {1,2,4}
   13:    1101 ~ {1,3,4}
   16:   10000 ~ {5}
   19:   10011 ~ {1,2,5}
   22:   10110 ~ {2,3,5}
   25:   11001 ~ {1,4,5}
   26:   11010 ~ {2,4,5}
   32:  100000 ~ {6}
   35:  100011 ~ {1,2,6}
   38:  100110 ~ {2,3,6}
   44:  101100 ~ {3,4,6}
   49:  110001 ~ {1,5,6}
   50:  110010 ~ {2,5,6}
   52:  110100 ~ {3,5,6}
   64: 1000000 ~ {7}
   67: 1000011 ~ {1,2,7}
   70: 1000110 ~ {2,3,7}
   76: 1001100 ~ {3,4,7}
   87: 1010111 ~ {1,2,3,5,7}
   88: 1011000 ~ {4,5,7}
   91: 1011011 ~ {1,2,4,5,7}
   93: 1011101 ~ {1,3,4,5,7}
   97: 1100001 ~ {1,6,7}
   98: 1100010 ~ {2,6,7}
  100: 1100100 ~ {3,6,7}
		

Crossrefs

The LHS rank statistic is A069010, counted by A034839 (for partitions A384881, A116674).
The RHS rank statistic is A384890, counted by A384893 (for partitions A268193, A384905).
Subsets of this type are counted by A385572, with n A217615.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
  • PARI
    is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ Christian Sievers, Jul 18 2025

A385216 Greatest Heinz number of a sparse submultiset of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 4, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 10, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 20, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 12 are {1,1,2}, with sparse submultisets {{},{1},{2},{1,1}}, with Heinz numbers {1,2,3,4}, so a(12) = 4.
The prime indices of 36 are {1,1,2,2}, with sparse submultisets {{},{1},{2},{1,1},{2,2}}, with Heinz numbers {1,2,3,4,9}, so a(36) = 9.
The prime indices of 462 are {1,2,4,5}, with sparse submultisets {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with Heinz numbers {1,2,3,7,11,14,21,22,33}, so a(462) = 33.
		

Crossrefs

Sparse submultisets are counted by A166469, maximal A385215.
The union is A319630 (Heinz numbers of sparse multisets), complement A104210.
For binary instead of prime indices we have A374356, see A245564, A384883.
A000005 counts divisors (or submultisets of prime indices).
A001222 counts prime factors, distinct A001221.
A051903 gives greatest prime exponent, least A051904, counted by A091602.
A055396 gives least prime index, greatest A061395, counted by A008284.
A056239 adds up prime indices, row sums of A112798.
A212166 ranks partitions with max multiplicity = length, counted by A239964.
A381542 ranks partitions with max part = max multiplicity, counted by A240312.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Max@@Select[Divisors[n],FreeQ[Differences[prix[#]],1]&],{n,100}]

Formula

a(n) = n iff n belongs to A319630.

A385574 Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2025

Keywords

Comments

These are also integer partitions of n with the same number of distinct parts as maximal anti-runs of parts.

Examples

			The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14).
The a(1) = 1 through a(10) = 10 reversed partitions (A = 10):
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)      (9)      (A)
                 (112)  (113)  (114)  (115)  (116)    (117)    (118)
                        (122)         (133)  (224)    (144)    (226)
                                      (223)  (233)    (225)    (244)
                                             (11123)  (11124)  (334)
                                                      (11223)  (11125)
                                                               (11134)
                                                               (11224)
                                                               (11233)
                                                               (12223)
		

Crossrefs

The RHS is counted by A116608, rank statistic A297155.
The LHS is counted by A133121, rank statistic A046660.
For related inequalities see A212165, A212168, A361204.
For subsets instead of partitions see A217615, A385572, A385575.
These partitions are ranked by A385576.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A034839 counts subsets by number maximal runs, for partitions A384881, strict A116674.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A268193 counts partitions by maximal anti-runs, strict A384905, subsets A384893.
A355394 counts partitions with neighbors, complement A356236.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
  • PARI
    lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025

Formula

For a partition p, let s(p) be its sum, e(p) the number of equal adjacent pairs, and d(p) the number of distinct adjacent pairs. Then Sum_{p partition} x^s(p) * t^(e(p)-d(p)) = (Product_{i>=1} (1 + x^i/(t*(1-t*x^i))) - 1) * t + 1, so a(n) is the coefficient of x^n*t^0 of this expression. - Christian Sievers, Jul 18 2025

A385814 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 3, 2, 3, 1, 1, 1, 0, 3, 4, 2, 3, 1, 1, 1, 0, 4, 5, 4, 3, 3, 1, 1, 1, 0, 5, 5, 6, 5, 3, 3, 1, 1, 1, 0, 6, 8, 7, 6, 6, 3, 3, 1, 1, 1, 0, 7, 9, 10, 8, 7, 6, 3, 3, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2025

Keywords

Examples

			The partition (8,5,4,2,1) has maximal proper anti-runs ((8,5),(4,2),(1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal proper anti-runs ((8,5,3),(2),(2)) so is also counted under T(20,3).
Row n = 8 counts the following partitions:
  .  8   611  5111  41111  32111   221111  2111111  11111111
     71  521  4211  3221   311111
     62  44   332   2222   22211
     53  431  3311
         422
Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  1  1  1
  0  2  2  1  1  1
  0  3  2  3  1  1  1
  0  3  4  2  3  1  1  1
  0  4  5  4  3  3  1  1  1
  0  5  5  6  5  3  3  1  1  1
  0  6  8  7  6  6  3  3  1  1  1
  0  7  9 10  8  7  6  3  3  1  1  1
  0  9 11 13 12  9  8  6  3  3  1  1  1
  0 10 14 16 15 13 10  8  6  3  3  1  1  1
  0 12 19 18 21 17 14 11  8  6  3  3  1  1  1
  0 14 21 26 23 24 19 15 11  8  6  3  3  1  1  1
  0 17 26 31 33 28 26 20 16 11  8  6  3  3  1  1  1
  0 19 32 37 40 39 31 28 21 16 11  8  6  3  3  1  1  1
  0 23 38 47 50 47 45 34 29 22 16 11  8  6  3  3  1  1  1
  0 26 45 57 61 61 54 48 36 30 22 16 11  8  6  3  3  1  1  1
  0 31 53 71 75 76 70 60 51 37 31 22 16 11  8  6  3  3  1  1  1
		

Crossrefs

Row sums are A000041, strict A000009.
Column k = 1 is A003114.
For anti-runs instead of proper anti-runs we have A268193.
The corresponding rank statistic is A356228.
For proper runs instead of proper anti-runs we have A384881.
For subsets instead of partitions we have A384893, runs A034839.
The strict case is A384905.
For runs instead of proper anti-runs we have A385815.
A007690 counts partitions with no singletons (ranks A001694), complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A047993 counts partitions with max part = length, ranks A106529.
A098859 counts Wilf partitions, complement A336866 (ranks A325992).
A116608 counts partitions by distinct parts.
A116931 counts sparse partitions, ranks A319630.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1>#2+1&]]==k&]],{n,0,10},{k,0,n}]

A385815 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive elements decreasing by 0 or 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 7, 4, 0, 0, 0, 0, 0, 8, 7, 0, 0, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 13, 16, 1, 0, 0, 0, 0, 0, 0, 0, 15, 25, 2, 0, 0, 0, 0, 0, 0, 0, 0, 18, 34, 4, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2025

Keywords

Examples

			The partition (8,5,4,2,1) has maximal runs ((8),(5,4),(2,1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal runs ((8),(5),(3,2,2)) so is also counted under T(20,3).
Row n = 9 counts the following partitions:
  (9)                  (6,3)            (5,3,1)
  (5,4)                (7,2)
  (3,3,3)              (8,1)
  (4,3,2)              (4,4,1)
  (3,2,2,2)            (5,2,2)
  (3,3,2,1)            (6,2,1)
  (2,2,2,2,1)          (7,1,1)
  (3,2,2,1,1)          (4,2,2,1)
  (2,2,2,1,1,1)        (4,3,1,1)
  (3,2,1,1,1,1)        (5,2,1,1)
  (2,2,1,1,1,1,1)      (6,1,1,1)
  (2,1,1,1,1,1,1,1)    (3,3,1,1,1)
  (1,1,1,1,1,1,1,1,1)  (4,2,1,1,1)
                       (5,1,1,1,1)
                       (4,1,1,1,1,1)
                       (3,1,1,1,1,1,1)
Triangle begins:
   1
   0   1
   0   2   0
   0   3   0   0
   0   4   1   0   0
   0   5   2   0   0   0
   0   7   4   0   0   0   0
   0   8   7   0   0   0   0   0
   0  10  12   0   0   0   0   0   0
   0  13  16   1   0   0   0   0   0   0
   0  15  25   2   0   0   0   0   0   0   0
   0  18  34   4   0   0   0   0   0   0   0   0
   0  23  46   8   0   0   0   0   0   0   0   0   0
   0  26  62  13   0   0   0   0   0   0   0   0   0   0
   0  31  82  22   0   0   0   0   0   0   0   0   0   0   0
		

Crossrefs

Row sums are A000041, strict A000009.
Column k = 1 is A034296 (flat or gapless partitions, ranks A066311 or A073491).
For subsets instead of partitions we have A034839, anti-runs A384893.
The strict case appears to be A116674.
For anti-runs instead of runs we have A268193.
The corresponding rank statistic is A287170.
For proper runs instead of runs we have A384881.
For proper anti-runs instead of runs we have A385814.
A007690 counts partitions with no singletons (ranks A001694), complement A183558.
A047993 counts partitions with max part = length, rank A106529.
A098859 counts Wilf partitions, complement A336866 (ranks A325992).
A116608 counts partitions by distinct parts.
A116931 counts sparse partitions, ranks A319630.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1<=#2+1&]]==k&]],{n,0,20},{k,0,n}]

A366154 Irregular triangle read by rows: T(n,k) is the number of integer partitions of n with at least one part a_i such that a_i - a_{i+k} = k.

Original entry on oeis.org

0, 1, 2, 3, 1, 5, 1, 7, 3, 1, 11, 3, 2, 15, 7, 3, 1, 22, 9, 4, 2, 30, 15, 7, 4, 1, 42, 20, 11, 6, 2, 56, 32, 16, 9, 4, 1, 77, 40, 22, 12, 7, 2, 101, 61, 33, 19, 11, 4, 1, 135, 78, 44, 26, 16, 7, 2, 176, 112, 61, 39, 23, 12, 4, 1, 231, 142, 81, 52, 32, 18, 7, 2
Offset: 0

Views

Author

John Tyler Rascoe, Oct 01 2023

Keywords

Comments

Empirical: The first k terms of each column are A000070, for columns k > 0.

Examples

			Triangle begins:
      k=0   1  2  3  4
  n=0:  0
  n=1:  1
  n=2:  2
  n=3:  3,  1
  n=4:  5,  1
  n=5:  7,  3, 1
  n=6: 11,  3, 2
  n=7: 15,  7, 3, 1
  n=8: 22,  9, 4, 2
  n=9: 30, 15, 7, 4, 1
  ...
T(7,1) = 7: T(7,2) = 3: T(7,3) = 1:
      (43)        (331)      (4111)
     (421)       (3211)
     (322)      (31111)
    (3211)
    (2221)
   (22111)
  (211111)
		

Crossrefs

Cf. A000041 (column k=0), A237666 (column k=1).

Programs

  • Python
    # see linked program

A385214 Number of subsets of {1..n} without all equal lengths of maximal runs of consecutive elements increasing by 1.

Original entry on oeis.org

0, 0, 0, 0, 2, 8, 25, 66, 159, 361, 791, 1688, 3539, 7328, 15040, 30669, 62246, 125896, 253975, 511357, 1028052
Offset: 0

Views

Author

Gus Wiseman, Jun 25 2025

Keywords

Examples

			The maximal runs of S = {1,2,4,5,6,8,9} are ((1,2),(4,5,6),(8,9)), with lengths (2,3,2), so S is counted under a(9).
The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  .  {1,2,4}  {1,2,4}
              {1,3,4}  {1,2,5}
                       {1,3,4}
                       {1,4,5}
                       {2,3,5}
                       {2,4,5}
                       {1,2,3,5}
                       {1,3,4,5}
		

Crossrefs

These subsets are ranked by A164708, complement A164707
The complement is counted by A243815.
For distinct instead of equal lengths we have A384176, complement A384175.
For anti-runs instead of runs we have complement of A384889, for partitions A384888.
For permutations instead of subsets we have complement of A384892, distinct A384891.
For partitions instead of subsets we have complement of A384904, strict A384886.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A049988 counts partitions with equal run-lengths, distinct A325325.
A329738 counts compositions with equal run-lengths, distinct A329739.
A384177 counts subsets with all distinct lengths of maximal anti-runs, ranks A384879.
A384887 counts partitions with equal lengths of gapless runs, distinct A384884.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
Previous Showing 21-30 of 31 results. Next