cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A216154 Triangle read by rows, T(n,k) n>=0, k>=0, generalization of A000255.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 21, 9, 1, 53, 128, 78, 16, 1, 309, 905, 710, 210, 25, 1, 2119, 7284, 6975, 2680, 465, 36, 1, 16687, 65821, 74319, 35035, 7945, 903, 49, 1, 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1, 1468457, 7275537, 10690812, 6879684, 2279214, 419958, 44268, 2628, 81, 1
Offset: 0

Views

Author

Peter Luschny, Sep 19 2012

Keywords

Examples

			     1,
     1,      1,
     3,      4,      1,
    11,     21,      9,      1,
    53,    128,     78,     16,      1,
   309,    905,    710,    210,     25,      1,
  2119,   7284,   6975,   2680,    465,     36,      1,
16687,  65821,  74319,  35035,   7945,    903,     49,      1,
148329, 660064, 857836, 478464, 133630,  19936,   1596,     64,      1,
		

Crossrefs

A000255 (col. 0), A110450 (diag. n,n-2).

Programs

  • Maple
    A216154 := proc(n,k) local L, Z;
    L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*C(n,n-k)*C(n-1,n-k)):
    Z := (n,k) -> add(C(-j,-n)*L(j,k), j=0..n);
    Z(n+1, k+1) end:
    seq(seq(A216154(n,k), k=0..n), n=0..9); # Peter Luschny, Apr 13 2016
  • Mathematica
    T[0, 0] = 1; T[0, ] = 0; T[n, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (2k+1) T[n-1, k] + (k+1) (k+2) T[n-1, k+1]; T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    def A216154_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(1+2*k)*M[n-1,k]+(k+1)*(k+2)*M[n-1,k+1]
        return M
    A216154_triangle(9)

Formula

Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+(1+2*k)*T(n-1,k)+(k+1)*(k+2)*T(n-1,k+1).
Let Z(n, k) = Sum_{j=0..n} C(-j, -n)*L(j, k) where L denotes the unsigned Lah numbers A271703. Then T(n, k) = Z(n+1, k+1). - Peter Luschny, Apr 13 2016

A330609 T(n, k) = binomial(n-k-1, k-1)*(n-k)!/k! for n >= 0 and 0 <= k <= floor(n/2). Irregular triangle read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1
Offset: 0

Views

Author

Peter Luschny, Dec 27 2019

Keywords

Comments

Also the antidiagonals of the Lah triangle A271703.

Examples

			Triangle begins:
[0] 1
[1] 0
[2] 0, 1
[3] 0, 2
[4] 0, 6,     1
[5] 0, 24,    6
[6] 0, 120,   36,    1
[7] 0, 720,   240,   12
[8] 0, 5040,  1800,  120,  1
[9] 0, 40320, 15120, 1200, 20
		

Crossrefs

Variants: A180047, A221913. Row sums: A001053.
Cf. A271703.

Programs

  • Maple
    T := (n, k) -> binomial(n-k-1, k-1)*(n-k)!/k!:
    seq(seq(T(n, k), k=0..floor(n/2)), n=0..12);
    # Alternative:
    T := proc(n, k) option remember;
    if (n=0 and k=0) or (n=2 and k=1) then 1 elif (k < 1) or (k > ceil(n/2)) then 0
    else (n-1)*T(n-1, k) + T(n-2, k-1) fi end: seq(seq(T(n, k), k=0..n/2), n=0..12);
  • Mathematica
    Table[Binomial[n-k-1,k-1] (n-k)!/k!,{n,0,20},{k,0,Floor[n/2]}]//Flatten (* Harvey P. Dale, Oct 19 2021 *)

Formula

T(0,0) = T(2,1) = 1. If k < 1 or k > ceiling(n/2) then T(n,k) = 0. Otherwise:
T(n, k) = (n-1)*T(n-1, k) + T(n-2, k-1)

A355005 Table read by rows. T(n, k) = n*((k + n)!)^2/((k + n)*(n!)^2*k!) for n > 0 and T(0, 0) = 1.

Original entry on oeis.org

1, 1, 2, 1, 6, 36, 1, 12, 120, 1200, 1, 20, 300, 4200, 58800, 1, 30, 630, 11760, 211680, 3810240, 1, 42, 1176, 28224, 635040, 13970880, 307359360, 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000
Offset: 0

Views

Author

Peter Luschny, Jun 15 2022

Keywords

Examples

			[0] 1;
[1] 1,  2;
[2] 1,  6,   36;
[3] 1, 12,  120,  1200;
[4] 1, 20,  300,  4200,   58800;
[5] 1, 30,  630, 11760,  211680,  3810240;
[6] 1, 42, 1176, 28224,  635040, 13970880,  307359360;
[7] 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480;
		

Crossrefs

T(n, 1) = A002378, T(n, n) = A187535, A355004 (row sums), A271703 (Lah).

Programs

  • Maple
    T := (n, k) -> ifelse(n = 0, 1, n*((k + n)!)^2 / ((k + n)*(n!)^2*k!)):
    seq(seq(T(n, k), k = 0..n), n = 0..8);

Formula

T(n, k) = Lah(k + n, n), where Lah denotes the unsigned Lah numbers A271703.

A359365 a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 72, 240, 3600, 75600, 1411200, 10160640, 457228800, 4191264000, 184415616000, 2054916864000, 12466495641600, 1308982042368000, 314155690168320000, 14241724620963840000, 2178983867007467520000, 37260624125827694592000, 337119932567012474880000
Offset: 0

Views

Author

Peter Luschny, Dec 30 2022

Keywords

Comments

The lcm of the rows of the unsigned Lah triangle (for k >= 1).

Crossrefs

Cf. A271703 (unsigned Lah numbers), A103505 (gcd counterpart).

Programs

  • Maple
    # Maple has the convention integer lcm() = 1, which covers the case n = 0.
    a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)):
    seq(a(n), n = 0..20);
  • Mathematica
    {1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* Michael De Vlieger, Dec 30 2022 *)
  • PARI
    a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ Michel Marcus, Dec 30 2022
  • Python
    from functools import cache
    from sympy import lcm
    def A359365 (n: int) -> int:
        @cache
        def l(n: int) -> list[int]:
            if n == 0: return [1]
            row: list[int] = l(n - 1) + [1]
            row[0] = 0
            for k in range(n - 1, 0, -1):
                row[k] = row[k] * (n + k - 1) + row[k - 1]
            return row
        return lcm(l(n)[1:])
    print([A359365(n) for n in range(21)])
    

A343581 a(n) = binomial(n, floor(n/2))*FallingFactorial(n - 1, n - floor(n/2)).

Original entry on oeis.org

1, 0, 2, 6, 36, 240, 1200, 12600, 58800, 846720, 3810240, 69854400, 307359360, 6849722880, 29682132480, 779155977600, 3339239904000, 100919250432000, 428906814336000, 14668613050291200, 61934143990118400, 2364758225077248000, 9931984545324441600, 418798681661180620800
Offset: 0

Views

Author

Peter Luschny, Apr 21 2021

Keywords

Comments

Partially ordered sets on n elements that consist entirely of floor(n/2) chains (nonempty, linearly ordered subsets).

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, binomial(n - 1, iquo(n,2) - 1)*n!/iquo(n, 2)!):
    seq(a(n), n = 0..21);
  • PARI
    a(n) = sum(j=n\2, n, abs(stirling(n, j, 1))*stirling(j, n\2, 2)); \\ Michel Marcus, Apr 22 2021
  • SageMath
    def a(n): return binomial(n, n - n//2)*falling_factorial(n - 1, n - n//2)
    print([a(n) for n in range(22)])
    

Formula

a(n) = Sum_{j=floor(n/2)..n} |Stirling1(n, j)|*Stirling2(j, floor(n/2)).
a(n) = binomial(n - 1, floor(n/2) - 1)*n!/floor(n/2)! for n >= 1, a(0) = 1.
a(n) = A271703(n, floor(n/2)).

A367776 a(n) = binomial(2*n, n - 1)*(2*n + 1)! / n!.

Original entry on oeis.org

0, 6, 240, 12600, 846720, 69854400, 6849722880, 779155977600, 100919250432000, 14668613050291200, 2364758225077248000, 418798681661180620800, 80831074222717378560000, 16887920864389166592000000, 3797443866983262444748800000, 914438045469094536918528000000
Offset: 0

Views

Author

Peter Luschny, Nov 29 2023

Keywords

Crossrefs

Cf. A000108 (Catalan), A271703.

Programs

  • Maple
    seq(binomial(2*n, n - 1)*(2*n + 1)! / n!, n = 0..15);
  • Mathematica
    a[n_]:=n*CatalanNumber[n]*Gamma[2*n+2]/n!;Flatten[Table[a[n],{n,0,15}]] (* Detlef Meya, Dec 02 2023 *)

Formula

a(n) = A271703(2*n + 1, n).
a(n) = binomial(2*n+1,n)*(2n)!/(n-1)! for n > 0. - Chai Wah Wu, Nov 30 2023
a(n) = n*A000108(n)*(2*n + 1)!/n!. - Detlef Meya, Dec 02 2023
Previous Showing 31-36 of 36 results.