A216154
Triangle read by rows, T(n,k) n>=0, k>=0, generalization of A000255.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 11, 21, 9, 1, 53, 128, 78, 16, 1, 309, 905, 710, 210, 25, 1, 2119, 7284, 6975, 2680, 465, 36, 1, 16687, 65821, 74319, 35035, 7945, 903, 49, 1, 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1, 1468457, 7275537, 10690812, 6879684, 2279214, 419958, 44268, 2628, 81, 1
Offset: 0
1,
1, 1,
3, 4, 1,
11, 21, 9, 1,
53, 128, 78, 16, 1,
309, 905, 710, 210, 25, 1,
2119, 7284, 6975, 2680, 465, 36, 1,
16687, 65821, 74319, 35035, 7945, 903, 49, 1,
148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1,
-
A216154 := proc(n,k) local L, Z;
L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*C(n,n-k)*C(n-1,n-k)):
Z := (n,k) -> add(C(-j,-n)*L(j,k), j=0..n);
Z(n+1, k+1) end:
seq(seq(A216154(n,k), k=0..n), n=0..9); # Peter Luschny, Apr 13 2016
-
T[0, 0] = 1; T[0, ] = 0; T[n, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (2k+1) T[n-1, k] + (k+1) (k+2) T[n-1, k+1]; T[, ] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
def A216154_triangle(dim):
M = matrix(ZZ,dim,dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(1+2*k)*M[n-1,k]+(k+1)*(k+2)*M[n-1,k+1]
return M
A216154_triangle(9)
A330609
T(n, k) = binomial(n-k-1, k-1)*(n-k)!/k! for n >= 0 and 0 <= k <= floor(n/2). Irregular triangle read by rows.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1
Offset: 0
Triangle begins:
[0] 1
[1] 0
[2] 0, 1
[3] 0, 2
[4] 0, 6, 1
[5] 0, 24, 6
[6] 0, 120, 36, 1
[7] 0, 720, 240, 12
[8] 0, 5040, 1800, 120, 1
[9] 0, 40320, 15120, 1200, 20
-
T := (n, k) -> binomial(n-k-1, k-1)*(n-k)!/k!:
seq(seq(T(n, k), k=0..floor(n/2)), n=0..12);
# Alternative:
T := proc(n, k) option remember;
if (n=0 and k=0) or (n=2 and k=1) then 1 elif (k < 1) or (k > ceil(n/2)) then 0
else (n-1)*T(n-1, k) + T(n-2, k-1) fi end: seq(seq(T(n, k), k=0..n/2), n=0..12);
-
Table[Binomial[n-k-1,k-1] (n-k)!/k!,{n,0,20},{k,0,Floor[n/2]}]//Flatten (* Harvey P. Dale, Oct 19 2021 *)
A355005
Table read by rows. T(n, k) = n*((k + n)!)^2/((k + n)*(n!)^2*k!) for n > 0 and T(0, 0) = 1.
Original entry on oeis.org
1, 1, 2, 1, 6, 36, 1, 12, 120, 1200, 1, 20, 300, 4200, 58800, 1, 30, 630, 11760, 211680, 3810240, 1, 42, 1176, 28224, 635040, 13970880, 307359360, 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000
Offset: 0
[0] 1;
[1] 1, 2;
[2] 1, 6, 36;
[3] 1, 12, 120, 1200;
[4] 1, 20, 300, 4200, 58800;
[5] 1, 30, 630, 11760, 211680, 3810240;
[6] 1, 42, 1176, 28224, 635040, 13970880, 307359360;
[7] 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480;
-
T := (n, k) -> ifelse(n = 0, 1, n*((k + n)!)^2 / ((k + n)*(n!)^2*k!)):
seq(seq(T(n, k), k = 0..n), n = 0..8);
A359365
a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1.
Original entry on oeis.org
1, 1, 2, 6, 72, 240, 3600, 75600, 1411200, 10160640, 457228800, 4191264000, 184415616000, 2054916864000, 12466495641600, 1308982042368000, 314155690168320000, 14241724620963840000, 2178983867007467520000, 37260624125827694592000, 337119932567012474880000
Offset: 0
-
# Maple has the convention integer lcm() = 1, which covers the case n = 0.
a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)):
seq(a(n), n = 0..20);
-
{1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* Michael De Vlieger, Dec 30 2022 *)
-
a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ Michel Marcus, Dec 30 2022
-
from functools import cache
from sympy import lcm
def A359365 (n: int) -> int:
@cache
def l(n: int) -> list[int]:
if n == 0: return [1]
row: list[int] = l(n - 1) + [1]
row[0] = 0
for k in range(n - 1, 0, -1):
row[k] = row[k] * (n + k - 1) + row[k - 1]
return row
return lcm(l(n)[1:])
print([A359365(n) for n in range(21)])
A343581
a(n) = binomial(n, floor(n/2))*FallingFactorial(n - 1, n - floor(n/2)).
Original entry on oeis.org
1, 0, 2, 6, 36, 240, 1200, 12600, 58800, 846720, 3810240, 69854400, 307359360, 6849722880, 29682132480, 779155977600, 3339239904000, 100919250432000, 428906814336000, 14668613050291200, 61934143990118400, 2364758225077248000, 9931984545324441600, 418798681661180620800
Offset: 0
-
a := n -> `if`(n=0, 1, binomial(n - 1, iquo(n,2) - 1)*n!/iquo(n, 2)!):
seq(a(n), n = 0..21);
-
a(n) = sum(j=n\2, n, abs(stirling(n, j, 1))*stirling(j, n\2, 2)); \\ Michel Marcus, Apr 22 2021
-
def a(n): return binomial(n, n - n//2)*falling_factorial(n - 1, n - n//2)
print([a(n) for n in range(22)])
A367776
a(n) = binomial(2*n, n - 1)*(2*n + 1)! / n!.
Original entry on oeis.org
0, 6, 240, 12600, 846720, 69854400, 6849722880, 779155977600, 100919250432000, 14668613050291200, 2364758225077248000, 418798681661180620800, 80831074222717378560000, 16887920864389166592000000, 3797443866983262444748800000, 914438045469094536918528000000
Offset: 0
-
seq(binomial(2*n, n - 1)*(2*n + 1)! / n!, n = 0..15);
-
a[n_]:=n*CatalanNumber[n]*Gamma[2*n+2]/n!;Flatten[Table[a[n],{n,0,15}]] (* Detlef Meya, Dec 02 2023 *)
Comments