cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 181 results. Next

A326774 For any number m, let m* be the bi-infinite string obtained by repetition of the binary representation of m; this sequence lists the numbers n such that for any k < n, n* does not equal k* up to a shift.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 11, 16, 17, 18, 19, 21, 23, 32, 33, 34, 35, 37, 38, 39, 43, 47, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 85, 87, 91, 95, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 146, 147, 149, 150, 151, 154
Offset: 0

Views

Author

Rémy Sigrist, Jul 27 2019

Keywords

Comments

This sequence contains every power of 2.
No term belongs to A121016.
Every terms belongs to A004761.
For any k > 0, there are A001037(k) terms with binary length k.
From Gus Wiseman, Apr 19 2020: (Start)
Also numbers k such that the k-th composition in standard order (row k of A066099) is a co-Lyndon word (regular Lyndon words being A275692). For example, the sequence of all co-Lyndon words begins:
0: () 37: (3,2,1) 79: (3,1,1,1,1)
1: (1) 38: (3,1,2) 85: (2,2,2,1)
2: (2) 39: (3,1,1,1) 87: (2,2,1,1,1)
4: (3) 43: (2,2,1,1) 91: (2,1,2,1,1)
5: (2,1) 47: (2,1,1,1,1) 95: (2,1,1,1,1,1)
8: (4) 64: (7) 128: (8)
9: (3,1) 65: (6,1) 129: (7,1)
11: (2,1,1) 66: (5,2) 130: (6,2)
16: (5) 67: (5,1,1) 131: (6,1,1)
17: (4,1) 68: (4,3) 132: (5,3)
18: (3,2) 69: (4,2,1) 133: (5,2,1)
19: (3,1,1) 70: (4,1,2) 134: (5,1,2)
21: (2,2,1) 71: (4,1,1,1) 135: (5,1,1,1)
23: (2,1,1,1) 73: (3,3,1) 137: (4,3,1)
32: (6) 74: (3,2,2) 138: (4,2,2)
33: (5,1) 75: (3,2,1,1) 139: (4,2,1,1)
34: (4,2) 77: (3,1,2,1) 140: (4,1,3)
35: (4,1,1) 78: (3,1,1,2) 141: (4,1,2,1)
(End)

Examples

			3* = ...11... equals 1* = ...1..., so 3 is not a term.
6* = ...110... equals up to a shift 5* = ...101..., so 6 is not a term.
11* = ...1011... only equals up to a shift 13* = ...1101... and 14* = ...1110..., so 11 is a term.
		

Crossrefs

Necklace compositions are counted by A008965.
Lyndon compositions are counted by A059966.
Length of Lyndon factorization of binary expansion is A211100.
Numbers whose reversed binary expansion is a necklace are A328595.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774 (this sequence).
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
    Select[Range[0,100],colynQ[stc[#]]&] (* Gus Wiseman, Apr 19 2020 *)
  • PARI
    See Links section.

A164894 Base-10 representation of the binary string formed by appending 10, 100, 1000, 10000, ..., etc., to 1.

Original entry on oeis.org

1, 6, 52, 840, 26896, 1721376, 220336192, 56406065280, 28879905423616, 29573023153783296, 60565551418948191232, 248076498612011791288320, 2032242676629600594233921536, 33296264013899376135928570454016, 1091051979207454757222107396637212672
Offset: 1

Views

Author

Gil Broussard, Aug 29 2009

Keywords

Comments

These numbers are half the sum of powers of 2 indexed by differences of a triangular number and each smaller triangular number (e.g., 21 - 15 = 6, 21 - 10 = 11, ..., 21 - 0 = 21).
This suggests another way to think about these numbers: consider the number triangle formed by the characteristic function of the triangular numbers (A010054), join together the first n rows (the very first row is row 0) as a single binary string and that gives the (n + 1)th term of this sequence. - Alonso del Arte, Nov 15 2013
Numbers k such that the k-th composition in standard order (row k of A066099) is an initial interval. - Gus Wiseman, Apr 02 2020

Examples

			a(1) = 1, also 1 in binary.
a(2) = 6, or 110 in binary.
a(3) = 52, or 110100 in binary.
a(4) = 840, or 1101001000 in binary.
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A225620.
The reversed version is A246534.
Standard composition numbers of permutations are A333218.
Standard composition numbers of strict increasing compositions are A333255.

Programs

  • Mathematica
    Table[Sum[2^((n^2 + n)/2 - (k^2 + k)/2 - 1), {k, 0, n - 1}], {n, 25}] (* Alonso del Arte, Nov 14 2013 *)
    Module[{nn=15,t},t=Table[10^n,{n,0,nn}];Table[FromDigits[Flatten[IntegerDigits/@Take[t,k]],2],{k,nn}]] (* Harvey P. Dale, Jan 16 2024 *)
  • Python
    def a(n): return int("".join("1"+"0"*i for i in range(n)), 2)
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 05 2021
    
  • Python
    def A164894(n): return sum(1<<(k*((n<<1)-k-1)>>1)+n-1 for k in range(n)) # Chai Wah Wu, Jul 11 2025

Formula

a(n) = Sum_{k=0..n-1} 2^((n^2 + n)/2 - (k^2 + k)/2 - 1). - Alonso del Arte, Nov 15 2013
Intersection of A333255 and A333217. - Gus Wiseman, Apr 02 2020
a(n) = Sum_{k=0..n-1} 2^(k*(2*n-k-1)/2+n-1). - Chai Wah Wu, Jul 11 2025

A333764 Numbers k such that the k-th composition in standard order is a co-necklace.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 47, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 85, 87, 91, 95, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2020

Keywords

Comments

A co-necklace is a finite sequence that is lexicographically greater than or equal to any cyclic rotation.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions

Examples

			The sequence together with the corresponding co-necklaces begins:
    1: (1)             32: (6)               69: (4,2,1)
    2: (2)             33: (5,1)             70: (4,1,2)
    3: (1,1)           34: (4,2)             71: (4,1,1,1)
    4: (3)             35: (4,1,1)           73: (3,3,1)
    5: (2,1)           36: (3,3)             74: (3,2,2)
    7: (1,1,1)         37: (3,2,1)           75: (3,2,1,1)
    8: (4)             38: (3,1,2)           77: (3,1,2,1)
    9: (3,1)           39: (3,1,1,1)         78: (3,1,1,2)
   10: (2,2)           42: (2,2,2)           79: (3,1,1,1,1)
   11: (2,1,1)         43: (2,2,1,1)         85: (2,2,2,1)
   15: (1,1,1,1)       45: (2,1,2,1)         87: (2,2,1,1,1)
   16: (5)             47: (2,1,1,1,1)       91: (2,1,2,1,1)
   17: (4,1)           63: (1,1,1,1,1,1)     95: (2,1,1,1,1,1)
   18: (3,2)           64: (7)              127: (1,1,1,1,1,1,1)
   19: (3,1,1)         65: (6,1)            128: (8)
   21: (2,2,1)         66: (5,2)            129: (7,1)
   23: (2,1,1,1)       67: (5,1,1)          130: (6,2)
   31: (1,1,1,1,1)     68: (4,3)            131: (6,1,1)
		

Crossrefs

The non-"co" version is A065609.
The reversed version is A328595.
Binary necklaces are A000031.
Necklace compositions are A008965.
Necklaces covering an initial interval are A019536.
Numbers whose prime signature is a necklace are A329138.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Reversed necklaces are A333943.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    coneckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[100],coneckQ[stc[#]]&]

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A374742 Number of integer compositions of n whose leaders of weakly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 87, 138, 220, 349, 556, 881, 1403, 2229, 3551, 5653, 9019, 14387, 22988, 36739, 58785, 94100, 150765, 241658, 387617, 622002, 998658, 1604032, 2577512, 4143243, 6662520, 10716931, 17243904, 27753518, 44680121, 71947123, 115880662
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,3,2,1,3,3) has maximal weakly decreasing subsequences ((3,1),(3,2,1),(3,3)), with leaders (3,3,3), so is counted under a(16).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (321)
                                (2111)   (411)
                                (11111)  (2112)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

Ranked by A374744 = positions of identical rows in A374740, cf. A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Types of run-leaders (instead of identical):
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
- For distinct leaders we have A374743, ranks A374701.
- For weakly increasing leaders we appear to have A188900.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    B(i) = x^i/(1-x^i) * sum(j=1,i-1, x^j*prod(k=1,j, (1-x^k)^(-1)))
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N,-1+(1+x^i/(1-x^i))/(1-B(i))))}
    A_x(30) \\ John Tyler Rascoe, Apr 29 2025

Formula

G.f.: 1 + Sum_{i>0} -1 + (1 + x^i/(1 - x^i))/(1 - B(i,x)) where B(i,x) = x^i/(1 - x^i) * Sum_{j=1..i-1} x^j * Product_{k=1..j} (1 - x^k)^(-1). - John Tyler Rascoe, Apr 29 2025

Extensions

a(24)-a(40) from Alois P. Heinz, Jul 26 2024

A374767 Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 24, 25, 32, 33, 34, 35, 37, 38, 40, 41, 44, 48, 49, 50, 52, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 83, 88, 89, 92, 96, 97, 98, 101, 102, 104, 105, 108, 128, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 10000000th composition in standard order is (3,1,4,3,2,1,2,8), with strictly decreasing runs ((3,1),(4,3,2,1),(2),(8)), with leaders (3,4,2,1) so 10000000 is in the sequence.
The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  24: (1,4)
  25: (1,3,1)
		

Crossrefs

The opposite version is A374698, counted by A374687.
The weak version is A374701, counted by A374743.
For identical instead of distinct runs we have A374759, counted by A374760.
Compositions of this type are counted by A374761.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],Greater]&]

A246534 a(n) = Sum_{k=1..n} 2^(T(k)-1), where T(k)=k(k+1)/2 = A000217(k).

Original entry on oeis.org

0, 1, 5, 37, 549, 16933, 1065509, 135283237, 34495021605, 17626681066021, 18032025190548005, 36911520172609651237, 151152638972001256489509, 1238091191924352276155613733, 20283647694843594776223406899749, 664634281540152780046679753547072037
Offset: 0

Views

Author

M. F. Hasler, Aug 28 2014

Keywords

Comments

Similar to A181388, this occurs as binary encoding of a straight n-omino lying on the y-axis, when the grid points of the first quadrant (N x N, N={0,1,2,...}) are given the weight 2^k, with k=0, 1,2, 3,4,5, ... filled in by antidiagonals.
Numbers k such that the k-th composition in standard order (row k of A066099) is a reversed initial interval. - Gus Wiseman, Apr 02 2020

Examples

			Label the cells of an infinite square matrix with 0,1,2,3,... along antidiagonals:
  0 1 3 6 10 ...
  2 4 7 ...
  5 8 ...
  9 ...
  ....
Now any subset of these cells can be represented by the sum of 2 raised to the power written in the given cells. In particular, the subset consisting of the first cell in the first 1, 2, 3, ... rows is represented by 2^0, 2^0+2^2, 2^0+2^2+2^5, ...
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A114994.
The non-reversed version is A164894.
Intersection of A333256 and A333217.
Partial sums of A036442.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[0,1000],normQ[stc[#]]&&Greater@@stc[#]&] (* Gus Wiseman, Apr 02 2020 *)
  • PARI
    t=0;vector(20,n,t+=2^(n*(n+1)/2-1)) \\ yields the vector starting with a[1]=1
    
  • PARI
    t=0;vector(20,n,if(n>1,t+=2^(n*(n-1)/2-1))) \\ yields the vector starting with 0
    
  • Python
    a = 0
    for n in range(1,17): print(a, end =', '); a += 1<<(n-1)*(n+2)//2 # Ya-Ping Lu, Jan 23 2024

A335235 Numbers k such that the k-th composition in standard order (A066099) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          20: (2,3)          48: (1,5)
   2: (2)          23: (2,1,1,1)      49: (1,4,1)
   3: (1,1)        24: (1,4)          50: (1,3,2)
   4: (3)          25: (1,3,1)        51: (1,3,1,1)
   5: (2,1)        27: (1,2,1,1)      52: (1,2,3)
   6: (1,2)        28: (1,1,3)        55: (1,2,1,1,1)
   7: (1,1,1)      29: (1,1,2,1)      56: (1,1,4)
   8: (4)          30: (1,1,1,2)      57: (1,1,3,1)
   9: (3,1)        31: (1,1,1,1,1)    59: (1,1,2,1,1)
  11: (2,1,1)      32: (6)            60: (1,1,1,3)
  12: (1,3)        33: (5,1)          61: (1,1,1,2,1)
  13: (1,2,1)      35: (4,1,1)        62: (1,1,1,1,2)
  14: (1,1,2)      37: (3,2,1)        63: (1,1,1,1,1,1)
  15: (1,1,1,1)    38: (3,1,2)        64: (7)
  16: (5)          39: (3,1,1,1)      65: (6,1)
  17: (4,1)        41: (2,3,1)        66: (5,2)
  18: (3,2)        44: (2,1,3)        67: (5,1,1)
  19: (3,1,1)      47: (2,1,1,1,1)    68: (4,3)
		

Crossrefs

The version counting partitions is A051424, with strict case A007360.
The version for binary indices is A087087.
The version counting compositions is A101268.
The version for prime indices is A302569.
The case without singletons is A333227.
The complement is A335236.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==1||CoprimeQ@@stc[#]&]

A374638 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 33, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 92, 93, 96, 97, 98, 100, 101, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374515.
Compositions of this type are counted by A374518.
For identical instead of distinct we have A374519, counted by A374517.
The complement is A374639.
Other types of runs (instead of anti-):
- For identical runs we have A374249, counted by A274174.
- For weakly increasing runs we have A374768, counted by A374632.
- For strictly increasing runs we have A374698, counted by A374687.
- For weakly decreasing runs we have A374701, counted by A374743.
- For strictly decreasing runs we have A374767, counted by A374761.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A374685 Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 24, 25, 27, 28, 29, 30, 31, 32, 36, 40, 42, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 72, 80, 82, 84, 96, 97, 99, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 6560th composition in standard order are ((1,3),(1,2,6)), with leaders (1,1), so 6560 is in the sequence.
The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  12: (1,3)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  20: (2,3)
  24: (1,4)
  25: (1,3,1)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

The weak version is A374633, counted by A374631.
Positions of constant rows in A374683.
Compositions of this type are counted by A374686.
For distinct leaders we have A374698, counted by A374687.
The opposite version is A374759, counted by A374760.
Other types of runs: A272919 (counts A000005), A374519 (counts A374517), A374744 (counts A374742).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],Less]&]
Previous Showing 51-60 of 181 results. Next