A326752
BII-numbers of hypertrees.
Original entry on oeis.org
0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 64, 128, 256, 260, 272, 276, 292, 304, 320, 512, 516, 532, 544, 548, 560, 576, 768, 784, 800, 1024, 1040, 1056, 2048, 2064, 2068, 2080, 2084, 2096, 2112, 2304, 2308, 2336, 2560, 2564, 2576, 2816, 3072, 4096, 4100, 4128, 4608
Offset: 1
The sequence of all hypertrees together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
8: {{3}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
Cf.
A000120,
A000272,
A030019 (spanning hypertrees),
A035053,
A048143,
A048793,
A052888,
A070939,
A134954,
A275307,
A326031,
A326702,
A326753.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
density[c_]:=Total[(Length[#1]-1&)/@c]-Length[Union@@c];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Select[Range[0,1000],#==0||stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&density[bpe/@bpe[#]]==-1&]
A309314
BII-numbers of hyperforests.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 320, 512, 513, 516, 520, 521, 524, 528, 532
Offset: 1
The sequence of all hyperforests together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
129: {{1},{4}}
130: {{2},{4}}
131: {{1},{2},{4}}
132: {{1,2},{4}}
136: {{3},{4}}
137: {{1},{3},{4}}
Cf.
A000120,
A030019,
A035053,
A048143,
A048793,
A052888,
A070939,
A134954,
A275307,
A326031,
A326702,
A326753.
A322336
Heinz numbers of 2-edge-connected integer partitions.
Original entry on oeis.org
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393, 399
Offset: 1
The sequence of all 2-edge-connected integer partitions begins: (2,2), (4,2), (3,3), (2,2,2), (6,2), (4,4), (8,2), (4,2,2), (6,3), (2,2,2,2), (10,2), (6,4), (12,2), (9,3), (6,2,2), (5,5), (3,3,3), (14,2), (8,4), (4,4,2).
Cf.
A001222,
A003963,
A013922,
A054921,
A056239,
A095983,
A112798,
A218970,
A275307,
A304714,
A304716,
A305078,
A305079,
A322335,
A322337,
A322338.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
Select[Range[100],twoedQ[primeMS/@primeMS[#]]&]
A322387
Number of 2-vertex-connected integer partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1
The a(14) = 10 2-vertex-connected integer partitions:
(14) (8,6) (6,4,4) (6,3,3,2) (6,2,2,2,2)
(10,4) (6,6,2) (6,4,2,2)
(12,2) (10,2,2)
Cf.
A013922,
A095983,
A218970,
A275307,
A304714,
A304716,
A305078,
A305079,
A322335,
A322336,
A322337,
A322338,
A322388,
A322389,
A322390.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]
A317631
Number of connected set partitions of the edges of labeled graphs with n vertices.
Original entry on oeis.org
1, 1, 1, 8, 200, 15901
Offset: 0
A317634 counts caps (also clutter partitions) of clutters covering n vertices.
A317635 counts connected vertex sets of clutters covering n vertices.
A317634
Number of caps (also clutter partitions) of clutters (connected antichains) spanning n vertices.
Original entry on oeis.org
1, 0, 1, 9, 315, 64880
Offset: 0
The a(3) = 9 clutter partitions:
{{{1,2,3}}}
{{{1,3},{2,3}}}
{{{1,2},{2,3}}}
{{{1,2},{1,3}}}
{{{1,3}},{{2,3}}}
{{{1,2}},{{2,3}}}
{{{1,2}},{{1,3}}}
{{{1,2},{1,3},{2,3}}}
{{{1,2}},{{1,3}},{{2,3}}}
Cf.
A001187,
A030019,
A048143,
A275307,
A286520,,
A293510,
A304717,
A317631,
A317632,
A317635.
A317635
Number of connected vertex sets of clutters (connected antichains) spanning n vertices.
Original entry on oeis.org
1, 0, 1, 14, 486, 71428
Offset: 0
There are four connected vertex sets of {{1,2},{1,3},{2,3}}, namely {1,2,3}, {1,2}, {1,3}, {2,3}; there are three connected vertex sets of {{1,2},{1,3}}, {{1,2},{2,3}}, and {{1,3},{2,3}} each; and there is one connected vertex set of {{1,2,3}}. So we have a total of a(3) = 4 + 3 * 3 + 1 = 14 connected vertex sets.
Cf.
A001187,
A006126,
A030019,
A048143,
A134954,
A275307,
A286520,
A293510,
A304717,
A317631,
A317632,
A317634.
-
nn=5;
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
clutQ[eds_]:=And[UnsameQ@@eds,!Apply[Or,Outer[#1=!=#2&&Complement[#1,#2]=={}&,eds,eds,1],{0,1}],Length[csm[eds]]==1];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
swell[c_]:=Union@@FixedPointList[Union[ReplaceList[#1,{_,a:{_,x_,_},_,b:{_,x_,_},_}:>Union[a,b]]]&,c]
Table[Sum[Length[swell[c]],{c,Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Complement[#1,#2]=={}&],And[Union@@#==Range[n],clutQ[#]]&]}],{n,nn}]
A327112
Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.
Original entry on oeis.org
0, 0, 4, 72, 29856
Offset: 0
Non-isomorphic representatives of the a(3) = 72 set-systems:
{{123}}
{{3}{123}}
{{23}{123}}
{{2}{3}{123}}
{{1}{23}{123}}
{{3}{23}{123}}
{{12}{13}{23}}
{{13}{23}{123}}
{{1}{2}{3}{123}}
{{1}{3}{23}{123}}
{{2}{3}{23}{123}}
{{3}{12}{13}{23}}
{{2}{13}{23}{123}}
{{3}{13}{23}{123}}
{{12}{13}{23}{123}}
{{1}{2}{3}{23}{123}}
{{2}{3}{12}{13}{23}}
{{1}{2}{13}{23}{123}}
{{2}{3}{13}{23}{123}}
{{3}{12}{13}{23}{123}}
{{1}{2}{3}{12}{13}{23}}
{{1}{2}{3}{13}{23}{123}}
{{2}{3}{12}{13}{23}{123}}
{{1}{2}{3}{12}{13}{23}{123}}
Covering 2-cut-connected graphs are
A013922, if we assume
A013922(2) = 1.
Covering 2-cut-connected antichains (blobs) are
A275307, if we assume
A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are
A327113.
2-vertex-connected integer partitions are
A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are
A327101.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]
A317674
Regular triangle where T(n,k) is the number of antichains covering n vertices with k connected components.
Original entry on oeis.org
1, 1, 1, 5, 3, 1, 84, 23, 6, 1, 6348, 470, 65, 10, 1, 7743728, 39598, 1575, 145, 15, 1, 2414572893530, 54354104, 144403, 4095, 280, 21, 1, 56130437190053299918162, 19316801997024, 218033088, 402073, 9100, 490, 28, 1
Offset: 1
Triangle begins:
1
1 1
5 3 1
84 23 6 1
6348 470 65 10 1
7743728 39598 1575 145 15 1
-
blg={1,1,5,84,6348,7743728,2414572893530,56130437190053299918162} (*A048143*);
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[Product[blg[[Length[s]]],{s,spn}],{spn,Select[sps[Range[n]],Length[#]==k&]}],{n,Length[blg]},{k,n}]
A322337
Number of strict 2-edge-connected integer partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 10, 5, 11, 1, 18, 3, 17, 8, 22, 3, 35, 5, 32, 17, 39, 16, 59, 14, 58, 33, 75, 28, 103, 35, 106, 71, 125, 63, 174, 81, 192, 127, 220, 130, 294, 170, 325, 237, 378, 257, 504
Offset: 1
The a(24) = 18 strict 2-edge-connected integer partitions of 24:
(15,9) (10,8,6) (10,8,4,2)
(16,8) (12,8,4) (12,6,4,2)
(18,6) (12,9,3)
(20,4) (14,6,4)
(21,3) (14,8,2)
(22,2) (15,6,3)
(14,10) (16,6,2)
(18,4,2)
(12,10,2)
Cf.
A007718,
A013922,
A054921,
A095983,
A218970,
A275307,
A286518,
A304714,
A304716,
A305078,
A305079,
A322335,
A322336.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}]
Comments