cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A326752 BII-numbers of hypertrees.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 64, 128, 256, 260, 272, 276, 292, 304, 320, 512, 516, 532, 544, 548, 560, 576, 768, 784, 800, 1024, 1040, 1056, 2048, 2064, 2068, 2080, 2084, 2096, 2112, 2304, 2308, 2336, 2560, 2564, 2576, 2816, 3072, 4096, 4100, 4128, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. A hypertree is a connected antichain of nonempty sets with density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices.

Examples

			The sequence of all hypertrees together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  320: {{1,2,3},{1,4}}
		

Crossrefs

Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    density[c_]:=Total[(Length[#1]-1&)/@c]-Length[Union@@c];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[0,1000],#==0||stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&density[bpe/@bpe[#]]==-1&]

A309314 BII-numbers of hyperforests.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 320, 512, 513, 516, 520, 521, 524, 528, 532
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. A hyperforest is an antichain of nonempty sets whose connected components are hypertrees, meaning they have density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices.

Examples

			The sequence of all hyperforests together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   12: {{1,2},{3}}
   16: {{1,3}}
   18: {{2},{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   33: {{1},{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  132: {{1,2},{4}}
  136: {{3},{4}}
  137: {{1},{3},{4}}
		

Crossrefs

Other BII-numbers: A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

A322336 Heinz numbers of 2-edge-connected integer partitions.

Original entry on oeis.org

9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393, 399
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. For example (6,6,3,2) is 2-edge-connected but (6,3,2) is not.

Examples

			The sequence of all 2-edge-connected integer partitions begins: (2,2), (4,2), (3,3), (2,2,2), (6,2), (4,4), (8,2), (4,2,2), (6,3), (2,2,2,2), (10,2), (6,4), (12,2), (9,3), (6,2,2), (5,5), (3,3,3), (14,2), (8,4), (4,4,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Select[Range[100],twoedQ[primeMS/@primeMS[#]]&]

A322387 Number of 2-vertex-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The a(14) = 10 2-vertex-connected integer partitions:
  (14)  (8,6)   (6,4,4)   (6,3,3,2)  (6,2,2,2,2)
        (10,4)  (6,6,2)   (6,4,2,2)
        (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]

Extensions

a(41)-a(42) from Jinyuan Wang, Jun 20 2020

A317631 Number of connected set partitions of the edges of labeled graphs with n vertices.

Original entry on oeis.org

1, 1, 1, 8, 200, 15901
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

In the terminology of my linked article, a(n) counts caps of connected graphs. - Gus Wiseman, Sep 06 2025

Crossrefs

A317634 counts caps (also clutter partitions) of clutters covering n vertices.
A317635 counts connected vertex sets of clutters covering n vertices.

Extensions

Name modified by Gus Wiseman, Sep 06 2025

A317634 Number of caps (also clutter partitions) of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 9, 315, 64880
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A kernel of a clutter is the restriction of the edge set to all edges contained within some connected vertex set. A clutter partition is a set partition of the edge set using kernels.

Examples

			The a(3) = 9 clutter partitions:
  {{{1,2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2},{2,3}}}
  {{{1,2},{1,3}}}
  {{{1,3}},{{2,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2},{1,3},{2,3}}}
  {{{1,2}},{{1,3}},{{2,3}}}
		

Crossrefs

A317635 Number of connected vertex sets of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 14, 486, 71428
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A connected vertex set in a clutter is any union of a connected subset of the edges.

Examples

			There are four connected vertex sets of {{1,2},{1,3},{2,3}}, namely {1,2,3}, {1,2}, {1,3}, {2,3}; there are three connected vertex sets of {{1,2},{1,3}}, {{1,2},{2,3}}, and {{1,3},{2,3}} each; and there is one connected vertex set of {{1,2,3}}. So we have a total of a(3) = 4 + 3 * 3 + 1 = 14 connected vertex sets.
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    clutQ[eds_]:=And[UnsameQ@@eds,!Apply[Or,Outer[#1=!=#2&&Complement[#1,#2]=={}&,eds,eds,1],{0,1}],Length[csm[eds]]==1];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    swell[c_]:=Union@@FixedPointList[Union[ReplaceList[#1,{_,a:{_,x_,_},_,b:{_,x_,_},_}:>Union[a,b]]]&,c]
    Table[Sum[Length[swell[c]],{c,Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Complement[#1,#2]=={}&],And[Union@@#==Range[n],clutQ[#]]&]}],{n,nn}]

A327112 Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.

Original entry on oeis.org

0, 0, 4, 72, 29856
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			Non-isomorphic representatives of the a(3) = 72 set-systems:
  {{123}}
  {{3}{123}}
  {{23}{123}}
  {{2}{3}{123}}
  {{1}{23}{123}}
  {{3}{23}{123}}
  {{12}{13}{23}}
  {{13}{23}{123}}
  {{1}{2}{3}{123}}
  {{1}{3}{23}{123}}
  {{2}{3}{23}{123}}
  {{3}{12}{13}{23}}
  {{2}{13}{23}{123}}
  {{3}{13}{23}{123}}
  {{12}{13}{23}{123}}
  {{1}{2}{3}{23}{123}}
  {{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}{123}}
  {{2}{3}{13}{23}{123}}
  {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering 2-cut-connected graphs are A013922, if we assume A013922(2) = 1.
Covering 1-cut-connected antichains (clutters) are A048143, if we assume A048143(0) = A048143(1) =0.
Covering 2-cut-connected antichains (blobs) are A275307, if we assume A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are A327113.
2-vertex-connected integer partitions are A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are A327101.
The cut-connectivity of the set-system with BII-number n is A326786(n).

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]

A317674 Regular triangle where T(n,k) is the number of antichains covering n vertices with k connected components.

Original entry on oeis.org

1, 1, 1, 5, 3, 1, 84, 23, 6, 1, 6348, 470, 65, 10, 1, 7743728, 39598, 1575, 145, 15, 1, 2414572893530, 54354104, 144403, 4095, 280, 21, 1, 56130437190053299918162, 19316801997024, 218033088, 402073, 9100, 490, 28, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       1
        5       3       1
       84      23       6       1
     6348     470      65      10       1
  7743728   39598    1575     145      15       1
		

Crossrefs

Programs

  • Mathematica
    blg={1,1,5,84,6348,7743728,2414572893530,56130437190053299918162} (*A048143*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Product[blg[[Length[s]]],{s,spn}],{spn,Select[sps[Range[n]],Length[#]==k&]}],{n,Length[blg]},{k,n}]

A322337 Number of strict 2-edge-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 10, 5, 11, 1, 18, 3, 17, 8, 22, 3, 35, 5, 32, 17, 39, 16, 59, 14, 58, 33, 75, 28, 103, 35, 106, 71, 125, 63, 174, 81, 192, 127, 220, 130, 294, 170, 325, 237, 378, 257, 504
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part.

Examples

			The a(24) = 18 strict 2-edge-connected integer partitions of 24:
  (15,9)   (10,8,6)   (10,8,4,2)
  (16,8)   (12,8,4)   (12,6,4,2)
  (18,6)   (12,9,3)
  (20,4)   (14,6,4)
  (21,3)   (14,8,2)
  (22,2)   (15,6,3)
  (14,10)  (16,6,2)
           (18,4,2)
           (12,10,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}]
Previous Showing 11-20 of 39 results. Next