cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A317672 Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        2       3
       44      24      16
     4983     940     300     125
  7565342  154770   18000    4320    1296
		

Crossrefs

Row sums are A048143. First column is A275307. Last column is A030019.

Programs

  • Mathematica
    blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A317631 Number of connected set partitions of the vertices of labeled graphs with n vertices.

Original entry on oeis.org

1, 1, 1, 8, 200, 15901
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Crossrefs

A317634 Number of caps (also clutter partitions) of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 9, 315, 64880
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A kernel of a clutter is the restriction of the edge set to all edges contained within some connected vertex set. A clutter partition is a set partition of the edge set using kernels.

Examples

			The a(3) = 9 clutter partitions:
  {{{1,2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2},{2,3}}}
  {{{1,2},{1,3}}}
  {{{1,3}},{{2,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2},{1,3},{2,3}}}
  {{{1,2}},{{1,3}},{{2,3}}}
		

Crossrefs

A317632 Number of connected induced nonempty non-singleton subgraphs of labeled connected graphs with n vertices.

Original entry on oeis.org

0, 0, 1, 13, 294, 12198, 946712, 140168924, 40223263760, 22598607583376, 24999757695984960, 54630901092648916704, 236304498092496715916416, 2026201628540583716863002880, 34482826679730591694177065948928, 1166004710785628820717860509317415168
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

The edges of an induced subgraph G|S are those edges of G with both ends contained in S, where S is a subset of the vertices.

Crossrefs

Programs

  • PARI
    seq(n)={
      my(p=sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n)));
      my(g=Vec(serlaplace(log(p))));
      my(q=sum(k=0, n, sum(j=2, k, binomial(k,j)*g[j]*2^(binomial(k-j, 2) + j*(k-j)))*x^k/k!, O(x*x^n)));
      Vec(serlaplace(q/p), -n-1)
    } \\ Andrew Howroyd, Dec 10 2018

Extensions

a(6) from Gus Wiseman, Dec 10 2018
Terms a(7) and beyond from Andrew Howroyd, Dec 10 2018

A317674 Regular triangle where T(n,k) is the number of antichains covering n vertices with k connected components.

Original entry on oeis.org

1, 1, 1, 5, 3, 1, 84, 23, 6, 1, 6348, 470, 65, 10, 1, 7743728, 39598, 1575, 145, 15, 1, 2414572893530, 54354104, 144403, 4095, 280, 21, 1, 56130437190053299918162, 19316801997024, 218033088, 402073, 9100, 490, 28, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       1
        5       3       1
       84      23       6       1
     6348     470      65      10       1
  7743728   39598    1575     145      15       1
		

Crossrefs

Programs

  • Mathematica
    blg={1,1,5,84,6348,7743728,2414572893530,56130437190053299918162} (*A048143*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Product[blg[[Length[s]]],{s,spn}],{spn,Select[sps[Range[n]],Length[#]==k&]}],{n,Length[blg]},{k,n}]

A318697 Number of ways to partition a hypertree spanning n vertices into hypertrees.

Original entry on oeis.org

1, 1, 7, 93, 1856, 49753, 1679441, 68463769, 3273695758, 179710285011, 11141016392749, 769939840667473, 58695964339179805, 4893452980658819151, 442915168219228586581, 43255083632741702266097, 4533695508041747494704359, 507638249638364368312476913
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Examples

			The a(3) = 7 hypertree partitions:
  {{{1,2,3}}}
  {{{1,2},{1,3}}}
  {{{1,2},{2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,3}},{{2,3}}}
		

Crossrefs

Programs

  • Mathematica
    trct[n_]:=Sum[StirlingS2[n-1,i]*n^(i-1),{i,0,n-1}];
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[Sum[n^(Length[ptn]-1)*Product[trct[s+1],{s,ptn}]*numSetPtnsOfType[ptn],{ptn,IntegerPartitions[n-1]}],{n,20}]

A317677 Fixed point of a shifted hypertree transform.

Original entry on oeis.org

1, 1, 4, 32, 402, 7038, 160114, 4522578, 153640590, 6132546770, 282517271694, 14812447505646, 873934551644074, 57486823088667270, 4183353479821220130, 334572221351085006242, 29242220614539638127294, 2779426070382982579163202, 286058737295150226682469518
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2018

Keywords

Comments

The hypertree transform H(a) of a sequence a is given by H(a)(n) = Sum_p n^(k-1) Prod_i a(|p_i|+1), where the sum is over all set partitions U(p_1, ..., p_k) = {1, ..., n-1}.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1/k, add(
          a(j)*b(n-j, k)*binomial(n-1, j-1)*k, j=1..n))
        end:
    a:= n-> b(n-1, n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    a[n_]:=a[n]=Sum[n^(Length[ptn]-1)*numSetPtnsOfType[ptn]*Product[a[s],{s,ptn}],{ptn,IntegerPartitions[n-1]}];
    Array[a,20]
    (* Second program: *)
    b[n_, k_] := b[n, k] = If[n == 0, 1/k, Sum[
         a[j]*b[n - j, k]*Binomial[n - 1, j - 1]*k, {j, 1, n}]];
    a[n_] := b[n - 1, n];
    Array[a, 20] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A317671 Regular triangle where T(n,k) is the number of labeled connected graphs on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 1, 3, 10, 12, 16, 238, 215, 150, 125, 11368, 7740, 4140, 2160, 1296, 1014888, 509446, 205065, 84035, 36015, 16807, 166537616, 59409952, 17393152, 5393920, 1863680, 688128, 262144, 50680432112, 12321597708, 2516756508, 563570217, 148803480, 45467730
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       3
       10      12      16
      238     215     150     125
    11368    7740    4140    2160    1296
  1014888  509446  205065   84035   36015   16807
		

Crossrefs

Row sums are A001187. First column is A013922. Last column is A000272.

Programs

  • Mathematica
    blg={0,1,1,10,238,11368,1014888,166537616,50680432112,29107809374336} (*A013922*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A322397 Number of 2-edge-connected clutters spanning n vertices.

Original entry on oeis.org

0, 0, 4, 71, 5927
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

A clutter is a connected antichain of sets. It is 2-edge-connected if it cannot be disconnected by removing any single edge. Compare to blobs or 2-vertex-connected clutters (A275307).

Examples

			The a(3) = 4 clutters:
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

A322399 Number of non-isomorphic 2-edge-connected clutters spanning n vertices.

Original entry on oeis.org

0, 0, 2, 12, 149
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

A clutter is a connected antichain of sets. It is 2-edge-connected if it cannot be disconnected by removing any single edge. Compare to blobs or 2-vertex-connected clutters (A304887).

Examples

			Non-isomorphic representatives of the a(4) = 12 clutters:
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Showing 1-10 of 10 results.