cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A317672 Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        2       3
       44      24      16
     4983     940     300     125
  7565342  154770   18000    4320    1296
		

Crossrefs

Row sums are A048143. First column is A275307. Last column is A030019.

Programs

  • Mathematica
    blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A317631 Number of connected set partitions of the vertices of labeled graphs with n vertices.

Original entry on oeis.org

1, 1, 1, 8, 200, 15901
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Crossrefs

A317634 Number of caps (also clutter partitions) of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 9, 315, 64880
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A kernel of a clutter is the restriction of the edge set to all edges contained within some connected vertex set. A clutter partition is a set partition of the edge set using kernels.

Examples

			The a(3) = 9 clutter partitions:
  {{{1,2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2},{2,3}}}
  {{{1,2},{1,3}}}
  {{{1,3}},{{2,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2},{1,3},{2,3}}}
  {{{1,2}},{{1,3}},{{2,3}}}
		

Crossrefs

A321911 Number of distinct chromatic symmetric functions of simple connected graphs with n vertices.

Original entry on oeis.org

1, 1, 2, 6, 20, 103, 759
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions p of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).

Examples

			The a(4) = 6 connected chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                    m(1111)
           m(211) + m(1111)
          2m(211) + m(1111)
  m(22) + 2m(211) + m(1111)
  m(22) + 3m(211) + m(1111)
  m(31) + 3m(211) + m(1111)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromSF/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,6}]

A317635 Number of connected vertex sets of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 14, 486, 71428
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A connected vertex set in a clutter is any union of a connected subset of the edges.

Examples

			There are four connected vertex sets of {{1,2},{1,3},{2,3}}, namely {1,2,3}, {1,2}, {1,3}, {2,3}; there are three connected vertex sets of {{1,2},{1,3}}, {{1,2},{2,3}}, and {{1,3},{2,3}} each; and there is one connected vertex set of {{1,2,3}}. So we have a total of a(3) = 4 + 3 * 3 + 1 = 14 connected vertex sets.
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    clutQ[eds_]:=And[UnsameQ@@eds,!Apply[Or,Outer[#1=!=#2&&Complement[#1,#2]=={}&,eds,eds,1],{0,1}],Length[csm[eds]]==1];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    swell[c_]:=Union@@FixedPointList[Union[ReplaceList[#1,{_,a:{_,x_,_},_,b:{_,x_,_},_}:>Union[a,b]]]&,c]
    Table[Sum[Length[swell[c]],{c,Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Complement[#1,#2]=={}&],And[Union@@#==Range[n],clutQ[#]]&]}],{n,nn}]

A318697 Number of ways to partition a hypertree spanning n vertices into hypertrees.

Original entry on oeis.org

1, 1, 7, 93, 1856, 49753, 1679441, 68463769, 3273695758, 179710285011, 11141016392749, 769939840667473, 58695964339179805, 4893452980658819151, 442915168219228586581, 43255083632741702266097, 4533695508041747494704359, 507638249638364368312476913
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Examples

			The a(3) = 7 hypertree partitions:
  {{{1,2,3}}}
  {{{1,2},{1,3}}}
  {{{1,2},{2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,3}},{{2,3}}}
		

Crossrefs

Programs

  • Mathematica
    trct[n_]:=Sum[StirlingS2[n-1,i]*n^(i-1),{i,0,n-1}];
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[Sum[n^(Length[ptn]-1)*Product[trct[s+1],{s,ptn}]*numSetPtnsOfType[ptn],{ptn,IntegerPartitions[n-1]}],{n,20}]

A125702 Number of connected categories with n objects and 2n-1 morphisms.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1

Views

Author

Keywords

Comments

Also number of connected antitransitive relations on n objects (antitransitive meaning a R b and b R c implies not a R c); equivalently, number of free oriented bipartite trees, with all arrows going from one part to the other part.
Also the number of non-isomorphic multi-hypertrees of weight n - 1 with singletons allowed. A multi-hypertree with singletons allowed is a connected set multipartition (multiset of sets) with density -1, where the density of a set multipartition is the weight (sum of sizes of the parts) minus the number of parts minus the number of vertices. - Gus Wiseman, Oct 30 2018

Examples

			From _Gus Wiseman_, Oct 30 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(6) = 10 multi-hypertrees of weight n - 1 with singletons allowed:
  {}  {{1}}  {{12}}    {{123}}      {{1234}}        {{12345}}
             {{1}{1}}  {{2}{12}}    {{13}{23}}      {{14}{234}}
                       {{1}{1}{1}}  {{3}{123}}      {{4}{1234}}
                                    {{1}{2}{12}}    {{2}{13}{23}}
                                    {{2}{2}{12}}    {{2}{3}{123}}
                                    {{1}{1}{1}{1}}  {{3}{13}{23}}
                                                    {{3}{3}{123}}
                                                    {{1}{2}{2}{12}}
                                                    {{2}{2}{2}{12}}
                                                    {{1}{1}{1}{1}{1}}
(End)
		

Crossrefs

Same as A122086 except for n = 1; see there for formulas. Cf. A125699.

Programs

  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2 - x)} \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A122086(n) for n > 1.
G.f.: 2*f(x) - f(x)^2 - x where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019

A317677 Fixed point of a shifted hypertree transform.

Original entry on oeis.org

1, 1, 4, 32, 402, 7038, 160114, 4522578, 153640590, 6132546770, 282517271694, 14812447505646, 873934551644074, 57486823088667270, 4183353479821220130, 334572221351085006242, 29242220614539638127294, 2779426070382982579163202, 286058737295150226682469518
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2018

Keywords

Comments

The hypertree transform H(a) of a sequence a is given by H(a)(n) = Sum_p n^(k-1) Prod_i a(|p_i|+1), where the sum is over all set partitions U(p_1, ..., p_k) = {1, ..., n-1}.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1/k, add(
          a(j)*b(n-j, k)*binomial(n-1, j-1)*k, j=1..n))
        end:
    a:= n-> b(n-1, n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    a[n_]:=a[n]=Sum[n^(Length[ptn]-1)*numSetPtnsOfType[ptn]*Product[a[s],{s,ptn}],{ptn,IntegerPartitions[n-1]}];
    Array[a,20]
    (* Second program: *)
    b[n_, k_] := b[n, k] = If[n == 0, 1/k, Sum[
         a[j]*b[n - j, k]*Binomial[n - 1, j - 1]*k, {j, 1, n}]];
    a[n_] := b[n - 1, n];
    Array[a, 20] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A317671 Regular triangle where T(n,k) is the number of labeled connected graphs on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 1, 3, 10, 12, 16, 238, 215, 150, 125, 11368, 7740, 4140, 2160, 1296, 1014888, 509446, 205065, 84035, 36015, 16807, 166537616, 59409952, 17393152, 5393920, 1863680, 688128, 262144, 50680432112, 12321597708, 2516756508, 563570217, 148803480, 45467730
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       3
       10      12      16
      238     215     150     125
    11368    7740    4140    2160    1296
  1014888  509446  205065   84035   36015   16807
		

Crossrefs

Row sums are A001187. First column is A013922. Last column is A000272.

Programs

  • Mathematica
    blg={0,1,1,10,238,11368,1014888,166537616,50680432112,29107809374336} (*A013922*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]
Showing 1-9 of 9 results.