cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A288389 Expansion of Product_{k>=1} (1 - x^k)^(sigma_2(k)).

Original entry on oeis.org

1, -1, -5, -5, -1, 35, 66, 100, 15, -330, -841, -1591, -1468, 426, 6306, 16399, 27745, 31544, 6364, -70389, -225322, -435265, -617937, -537135, 176008, 1970213, 5150080, 9277624, 12631298, 11048049, -1884235, -34460900, -92385183, -171971785, -247790333
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Crossrefs

Cf. A027847.
Product_{k>=1} (1 - x^k)^sigma_m(k): A288098 (m=0), A288385 (m=1), this sequence (m=2), A288392 (m=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-q^k)^DivisorSigma(2,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma[2](d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i)*a(i), i=0..n-1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^k)^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Oct 30 2018 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m, (1-x^k)^sigma(k,2))) \\ G. C. Greubel, Oct 30 2018
    

Formula

Convolution inverse of A275585.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A027847(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 29 2018

A301556 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma_2(k)).

Original entry on oeis.org

1, 2, 12, 42, 154, 498, 1640, 4990, 15092, 43840, 125220, 348478, 954294, 2561714, 6776404, 17644494, 45338734, 114971434, 288148860, 713968998, 1750662814, 4249685398, 10219662844, 24356466418, 57558783492, 134922807056, 313842321696, 724651728916
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Comments

Convolution of A275585 and A288414.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(5/4) * Pi * Zeta(3)^(1/4) * n^(3/4)/3 - Pi*n^(1/4) / (3 * 2^(13/4) * Zeta(3)^(1/4)) + Zeta(3)/(8*Pi^2)) * Zeta(3)^(1/8) / (2^(15/8) * n^(5/8)).

A321876 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - x^j)^sigma_k(j).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 8, 11, 1, 1, 10, 16, 21, 17, 1, 1, 18, 38, 52, 39, 34, 1, 1, 34, 100, 156, 128, 92, 52, 1, 1, 66, 278, 526, 534, 373, 170, 94, 1, 1, 130, 796, 1896, 2546, 2014, 913, 360, 145, 1, 1, 258, 2318, 7102, 13074, 12953, 6796, 2399, 667, 244
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
  11,  21,   52,  156,   526,   1896,  ...
  17,  39,  128,  534,  2546,  13074,  ...
		

Crossrefs

Main diagonal gives A319647.
Cf. A321877.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j)^DivisorSigma[k, j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Exp[Sum[DivisorSigma[k + 1, j] x^j/(j (1 - x^j)), {j, 1, n}]], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^k).
G.f. of column k: exp(Sum_{j>=1} sigma_(k+1)(j)*x^j/(j*(1 - x^j))).
Previous Showing 11-13 of 13 results.