cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 122 results. Next

A371736 Number of non-quanimous strict integer partitions of n, meaning no set partition with more than one block has all equal block-sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 12, 11, 18, 15, 26, 23, 38, 30, 54, 43, 72, 57, 104, 77, 142, 102, 179, 138, 256, 170, 340, 232, 412, 292, 585, 365, 760, 471, 889, 602, 1260, 718, 1610, 935, 1819, 1148, 2590, 1371, 3264, 1733, 3581, 2137, 5120, 2485, 6372
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A finite multiset of numbers is defined to be quanimous iff it can be partitioned into two or more multisets with equal sums. Quanimous partitions are counted by A321452 and ranked by A321454.

Examples

			The a(0) = 1 through a(9) = 8 strict partitions:
  ()  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
                (21)  (31)  (32)  (42)  (43)   (53)   (54)
                            (41)  (51)  (52)   (62)   (63)
                                        (61)   (71)   (72)
                                        (421)  (521)  (81)
                                                      (432)
                                                      (531)
                                                      (621)
		

Crossrefs

The non-strict "bi-" complement is A002219, ranks A357976.
The "bi-" version is A321142 or A371794, complement A237258, ranks A357854.
The non-strict version is A321451, ranks A321453.
The complement is A371737, non-strict A321452, ranks A321454.
The non-strict "bi-" version is A371795, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371792 counts non-biquanimous sets, complement A371791.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Select[sps[#], SameQ@@Total/@#&]]==1&]],{n,0,30}]

Formula

a(prime(k)) = A064688(k) = A000009(A000040(k)).

A371793 Number of non-biquanimous subsets of {1..n} containing n.

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 44, 84, 163, 314, 610, 1184, 2308, 4505, 8843, 17386, 34336, 67881, 134662, 267431, 532172, 1060048, 2113947, 4218325, 8423138, 16826162, 33623311, 67205646, 134351795, 268621562, 537124814, 1074092608, 2147953084, 4295613139, 8590784715, 17181035797, 34361248692, 68721546255, 137441586921, 274881519876, 549760320576, 1099517861045, 2199030848627, 4398057100987, 8796105652038, 17592203866158
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(5) = 12 subsets:
  {1}  {2}    {3}    {4}      {5}
       {1,2}  {1,3}  {1,4}    {1,5}
              {2,3}  {2,4}    {2,5}
                     {3,4}    {3,5}
                     {1,2,4}  {4,5}
                     {2,3,4}  {1,2,5}
                              {1,3,5}
                              {2,4,5}
                              {3,4,5}
                              {1,2,3,5}
                              {1,3,4,5}
                              {1,2,3,4,5}
		

Crossrefs

The complement is counted by A232466, differences of A371791.
This is the "bi-" version of A371790, differences of A371789.
First differences of A371792.
The complement is the "bi-" version of A371797, differences of A371796.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!biqQ[#]&]],{n,15}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025

A279791 Number of twice-partitions of type (Q,R,Q) and weight n.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 5, 8, 8, 16, 12, 23, 18, 36, 33, 50, 38, 84, 54, 106, 100, 155, 104, 244, 142, 301, 270, 436, 256, 684, 340, 788, 670, 1044, 585, 1868, 760, 1878, 1600, 2647
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Examples

			The a(8)=8 twice-partitions of type (Q,R,Q) are:
((8)), ((71)), ((62)), ((53)),
((521)), ((4)(31)), ((31)(4)), ((431)).
		

Crossrefs

Programs

  • Mathematica
    nn=20;
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Total[Total[Factorial/@Length/@Select[sps[Sort[#]],SameQ@@Total/@#&]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,nn}]

A301855 Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 4, 6, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 4, 7, 4, 8, 2, 6, 4, 6, 2, 4, 2, 4, 6, 6, 4, 8, 2, 6, 5, 4, 2, 6, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 4, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Examples

			The a(24) = 4 special divisors are 1, 2, 12, 24.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
    Table[Length[uqsubs[primeMS[n]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A301855(n) = if(1==n,n,my(m=Map(),w,s); fordiv(n,d,w = A056239(d); if(!mapisdefined(m, w, &s), mapput(m,w,Set([d])), mapput(m,w,setunion(Set([d]),s)))); sumdiv(n,d,(1==length(mapget(m,A056239(d)))))); \\ Antti Karttunen, Jul 01 2018

Extensions

More terms from Antti Karttunen, Jul 01 2018

A301900 Heinz numbers of strict non-knapsack partitions. Squarefree numbers such that more than one divisor has the same Heinz weight A056239(d).

Original entry on oeis.org

30, 70, 154, 165, 210, 273, 286, 330, 390, 442, 462, 510, 546, 561, 570, 595, 646, 690, 714, 741, 770, 858, 870, 874, 910, 930, 1045, 1110, 1122, 1155, 1173, 1190, 1230, 1254, 1290, 1326, 1330, 1334, 1365, 1410, 1430, 1482, 1495, 1590, 1610, 1653, 1770
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of strict non-knapsack partitions begins: (321), (431), (541), (532), (4321), (642), (651), (5321), (6321), (761), (5421), (7321), (6421), (752), (8321), (743), (871), (9321), (7421), (862), (5431), (6521).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[1000],SquareFreeQ[#]&&!UnsameQ@@wt/@Divisors[#]&]

Formula

Complement of A005117 in A299702.

A325876 Number of strict Golomb partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 18, 24, 29, 27, 38, 43, 47, 53, 67, 67, 84, 87, 102, 113, 137, 131, 167, 179, 204, 213, 261, 263, 315, 327, 377, 413, 476, 472, 564, 602, 677, 707, 820, 845, 969, 1027, 1131, 1213, 1364, 1413, 1596, 1700, 1858
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

We define a Golomb partition of n to be an integer partition of n such that every ordered pair of distinct parts has a different difference.
Also the number of strict integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum.
The non-strict case is A325858.

Examples

			The a(2) = 1 through a(11) = 11 partitions (A = 10, B = 11):
  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
       (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                   (41)  (51)  (52)   (62)   (63)   (73)   (74)
                               (61)   (71)   (72)   (82)   (83)
                               (421)  (431)  (81)   (91)   (92)
                                      (521)  (621)  (532)  (A1)
                                                    (541)  (542)
                                                    (631)  (632)
                                                    (721)  (641)
                                                           (731)
                                                           (821)
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]
  • Python
    from collections import Counter
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A325876(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1)-(n&1^1) if n else 1 # Chai Wah Wu, Sep 17 2023

A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 14, 34, 74, 164, 345, 734, 1523, 3161, 6488, 13302, 27104, 55150, 111823, 226443, 457586, 923721, 1862183, 3751130, 7549354, 15184291, 30521675, 61322711, 123151315, 247230601, 496158486, 995447739, 1996668494, 4004044396, 8027966324, 16092990132, 32255168125
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the elements are not disjoint from their own first differences.

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,2,3}  {2,4}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,4,5}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For differences of all pairs we have A093971, complement A196723.
For partitions we have A363260, complement A364467.
The complement is counted by A364463.
For subset-sums instead of differences we have A364534, complement A325864.
For strict partitions we have A364536, complement A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A108917 counts knapsack partitions, strict A275972.
A325325 counts partitions with all distinct differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) = 2^n - A364463(n). - Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A293627 Number of knapsack factorizations whose factors sum to n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 8, 11, 12, 19, 21, 27, 34, 45, 51, 69, 77, 100, 117, 146
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2017

Keywords

Comments

A knapsack factorization is a finite multiset of positive integers greater than one such that every distinct submultiset has a different product.

Examples

			The a(12) = 19 partitions are:
(12),
(10 2), (9 3), (8 4), (7 5), (6 6),
(8 2 2), (7 3 2), (6 4 2), (6 3 3), (5 5 2), (5 4 3), (4 4 4),
(6 2 2 2), (5 3 2 2), (4 3 3 2), (3 3 3 3),
(3 3 2 2 2),
(2 2 2 2 2 2).
		

Crossrefs

Programs

  • Mathematica
    nn=22;
    apsQ[y_]:=UnsameQ@@Times@@@Union[Rest@Subsets[y]];
    Table[Length@Select[IntegerPartitions[n],apsQ],{n,nn}]

A319318 Number of integer partitions of n such that every distinct submultiset has a different GCD.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 2, 6, 5, 5, 5, 8, 5, 9, 6, 8, 9, 11, 6, 11, 11, 11, 10, 14, 9, 16, 12, 14, 15, 15, 11, 19, 17, 17, 14, 22, 15, 22, 18, 18, 21, 25, 16, 24, 21, 23, 22, 28, 21, 26, 22, 26, 27, 32, 20, 35, 30, 27, 27, 31, 27, 38, 30, 33, 29
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Note that such partitions are necessarily strict.

Examples

			The a(31) = 16 partitions are (31), (16,15), (17,14), (18,13), (19,12), (20,11), (21,10), (22,9), (23,8), (24,7), (25,6), (26,5), (27,4), (28,3), (29,2), (15,10,6).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@GCD@@@Union[Rest[Subsets[#]]]&]],{n,30}]

A325854 Number of strict integer partitions of n such that every pair of distinct parts has a different quotient.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 9, 12, 13, 16, 20, 23, 30, 33, 41, 47, 52, 61, 75, 90, 98, 116, 132, 151, 173, 206, 226, 263, 297, 337, 387, 427, 488, 555, 623, 697, 782, 886, 984, 1108, 1240, 1374, 1545, 1726, 1910, 2120, 2358, 2614, 2903, 3218, 3567, 3933
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also the number of strict integer partitions of n such that every pair of (not necessarily distinct) parts has a different product.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)   (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)  (53)   (54)   (64)
                        (41)  (51)   (52)  (62)   (63)   (73)
                              (321)  (61)  (71)   (72)   (82)
                                           (431)  (81)   (91)
                                           (521)  (432)  (532)
                                                  (531)  (541)
                                                  (621)  (631)
                                                         (721)
The two strict partitions of 13 such that not every pair of distinct parts has a different quotient are (9,3,1) and (6,4,2,1).
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,30}]
Previous Showing 51-60 of 122 results. Next