cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A378223 Inverse Möbius transform of A345182.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 4, 4, 4, 2, 10, 2, 4, 6, 8, 2, 12, 2, 10, 6, 4, 2, 24, 4, 4, 8, 10, 2, 20, 2, 16, 6, 4, 6, 36, 2, 4, 6, 24, 2, 20, 2, 10, 16, 4, 2, 56, 4, 12, 6, 10, 2, 32, 6, 24, 6, 4, 2, 62, 2, 4, 16, 32, 6, 20, 2, 10, 6, 20, 2, 100, 2, 4, 16, 10, 6, 20, 2, 56, 16, 4, 2, 62, 6, 4, 6, 24, 2, 72, 6, 10, 6, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2024

Keywords

Comments

Apparently the Dirichlet convolution of A002131 and A323910. - Antti Karttunen, Nov 30 2024

Crossrefs

Cf. A002131, A323910, A345182, A378224 (Dirichlet inverse).
Cf. also A067824.
Odd bisection is not equal to A278223.

Programs

  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v)));
    A378223(n) = sumdiv(n,d,A345182(d));
    
  • PARI
    up_to = 20000;
    A378223list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = 1+sumdiv(n,d,(dA378223list(up_to);
    A378223(n) = v378223[n];

Formula

a(n) = Sum_{d|n} A345182(d).
For n > 2, a(n) = 2*A345182(n).

A292249 Compound filter (multiplicative order of 2 mod 2n+1 & prime signature of 2n+1): a(n) = P(A002326(n), A046523(2n+1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 14, 9, 42, 65, 90, 40, 44, 189, 61, 77, 273, 318, 434, 20, 115, 148, 702, 148, 230, 119, 265, 299, 297, 86, 1430, 320, 271, 1769, 1890, 142, 148, 2277, 373, 665, 54, 485, 625, 819, 2400, 3485, 86, 556, 77, 148, 115, 856, 1224, 850, 5150, 1377, 832, 5777, 702, 856, 434, 1220, 265, 430, 6438, 320, 5771, 35, 185, 8645, 271
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2017

Keywords

Crossrefs

Cf. A000027, A002326, A046523, A278223, A286573, A291769 (rgs-version of the same filter).
Cf. also A291755, A292268.

Programs

Formula

a(n) = (1/2)*(2 + ((A002326(n) + A046523(2n+1))^2) - A002326(n) - 3*A046523(2n+1)).

A286461 Compound filter (2-adic valuation of n & 4k+1,4k+3 prime-signature combination of 2n-1): a(n) = P(A001511(n), A286364((2*n)-1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 4, 9, 22, 5, 4, 32, 4, 5, 121, 9, 46, 437, 4, 20, 121, 17, 4, 24, 4, 5, 67, 14, 22, 17, 4, 24, 121, 5, 4, 2562, 211, 5, 121, 9, 4, 107, 121, 14, 7261, 5, 211, 24, 4, 17, 121, 41, 4, 2280, 4, 9, 254, 5, 4, 32, 4, 17, 67, 24, 22, 17, 631, 35, 121, 5, 121, 783, 4, 5, 121, 32, 211, 2280, 4, 9, 67, 17, 4, 41, 121, 5, 254, 9, 46, 2280, 4, 140, 121, 5, 4, 24
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A286364((2*n)-1))^2) - A001511(n) - 3*A286364((2*n)-1)).

A291767 Odd bisection of A291761.

Original entry on oeis.org

1, 3, 3, 3, 7, 3, 3, 9, 3, 3, 9, 3, 7, 12, 3, 3, 9, 9, 3, 9, 3, 3, 16, 3, 7, 9, 3, 9, 9, 3, 3, 16, 9, 3, 9, 3, 3, 16, 9, 3, 21, 3, 9, 9, 3, 9, 9, 9, 3, 16, 3, 3, 23, 3, 3, 9, 3, 9, 16, 9, 7, 9, 12, 3, 9, 3, 9, 26, 3, 3, 9, 9, 9, 16, 3, 3, 16, 9, 3, 9, 9, 3, 23, 3, 7, 16, 3, 16, 9, 3, 3, 9, 9, 9, 26, 3, 3, 23, 3, 3, 9, 9, 9, 16, 9
Offset: 1

Views

Author

Antti Karttunen, Sep 11 2017

Keywords

Comments

Records occur at positions: 1, 2, 5, 8, 14, 23, 41, 53, 68, 113, 122, 158, 203, 338, 365, ... (= (A147516(n)+1)/2) that give also all distinct values in this sequence: 1, 3, 7, 9, 12, 16, 21, 23, 26, 32, 34, 37, 40, 46, 48, 53, 58, 59, 64, 69, 72, 77, 81, ... Note that the terms of A291768 are all from the complementary sequence: 2, 4, 5, 6, 8, 10, 11, 13, 14, 15, 17, ...

Crossrefs

Programs

Formula

a(n) = A291761(2n - 1).

A286452 Compound filter (largest prime factor of n & prime signature of 2n-1): a(n) = P(A061395(n), A046523(2n-1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 2, 18, 5, 14, 16, 5, 9, 50, 5, 42, 59, 9, 2, 73, 23, 44, 31, 14, 20, 199, 5, 18, 61, 5, 40, 115, 9, 77, 67, 50, 35, 40, 5, 90, 179, 61, 9, 391, 14, 185, 50, 9, 100, 205, 23, 14, 94, 35, 27, 1006, 5, 20, 40, 44, 115, 395, 31, 228, 131, 59, 2, 61, 20, 295, 442, 54, 14, 320, 23, 346, 265, 9, 44, 125, 61, 275, 31, 23, 104, 1349, 14, 52, 314, 65, 125, 430
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy import primepi, primefactors, factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    def a(n): return T(a061395(n), a046523(2*n - 1)) # Indranil Ghosh, May 14 2017
  • Scheme
    (define (A286452 n) (* (/ 1 2) (+ (expt (+ (A061395 n) (A046523 (+ n n -1))) 2) (- (A061395 n)) (- (* 3 (A046523 (+ n n -1)))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A061395(n)+A046523(2n-1))^2) - A061395(n) - 3*A046523(2n-1)).

A286453 Compound filter: a(n) = P(A061395(n), A286465(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 11, 94, 5, 14, 254, 17, 9, 195, 47, 259, 500, 9, 11, 413, 138, 44, 303, 32, 20, 2784, 47, 354, 216, 5, 329, 506, 9, 77, 3161, 356, 35, 175, 107, 202, 2709, 216, 24, 11188, 14, 420, 356, 24, 285, 450, 498, 70, 2349, 35, 51, 115937, 5, 20, 329, 74, 310, 3420, 864, 1243, 336, 500, 11, 384, 20, 580, 47285, 87, 14, 615, 498, 1296, 3015, 9, 74, 3491, 216
Offset: 1

Views

Author

Antti Karttunen, May 14 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A061395(n)+A286465(n))^2) - A061395(n) - 3*A286465(n)).

A359600 The least odd number with the same prime signature as n.

Original entry on oeis.org

1, 3, 3, 9, 3, 15, 3, 27, 9, 15, 3, 45, 3, 15, 15, 81, 3, 45, 3, 45, 15, 15, 3, 135, 9, 15, 27, 45, 3, 105, 3, 243, 15, 15, 15, 225, 3, 15, 15, 135, 3, 105, 3, 45, 45, 15, 3, 405, 9, 45, 15, 45, 3, 135, 15, 135, 15, 15, 3, 315, 3, 15, 45, 729, 15, 105, 3, 45, 15, 105, 3, 675, 3, 15, 45, 45, 15, 105, 3, 405, 81
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2023

Keywords

Crossrefs

Cf. also A278223.

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i+1)^l[i][2], i=1..nops(l)))
            (sort(ifactors(n)[2], (x, y)->x[2]>y[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 12 2023
  • PARI
    a(n) = { my(f=vecsort(factor(n)[, 2], , 4)); prod(i=1, #f, prime(i+1)^f[i]) } \\ Andrew Howroyd, Jan 12 2023
    
  • Python
    from math import prod
    from sympy import prime, factorint
    def A359600(n): return prod(prime(i)**e for i, e in enumerate(sorted(factorint(n).values(), reverse=True),2)) # Chai Wah Wu, Jan 12 2023

Formula

a(n) = A003961(A046523(n)).

A290083 Odd bisection of A289626.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 7, 8, 9, 10, 11, 12, 14, 10, 15, 16, 18, 19, 20, 19, 22, 23, 19, 24, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 27, 38, 39, 41, 42, 43, 44, 46, 47, 38, 48, 50, 38, 51, 52, 53, 54, 55, 48, 56, 57, 47, 58, 60, 61, 51, 62, 64, 65, 66, 48, 68, 69, 70, 71, 72, 64, 73, 74, 58, 71, 76, 77, 79, 80, 81, 82, 76, 66, 84, 71, 85, 86, 87, 71
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A289626(2n-1).
Previous Showing 11-18 of 18 results.