cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A059021 Number of 3 X n checkerboards (with at least one red square) in which the set of red squares is edge-connected.

Original entry on oeis.org

0, 6, 40, 218, 1126, 5726, 28992, 146642, 741556, 3749816, 18961450, 95880894, 484833212, 2451616864, 12396892316, 62686360476, 316981037374, 1602852315476, 8105013367472, 40983964057352, 207240288658392
Offset: 0

Views

Author

John W. Layman, Dec 14 2000

Keywords

Comments

Number of nonzero 3 X n binary arrays with all 1's connected. Equivalently, the number of connected (non-null) induced subgraphs in the grid graph P_3 X P_n. - Andrew Howroyd, May 20 2017

Crossrefs

Row 3 of A287151.
See A059020 for the 2 X n case and A059524 for the 4 X n case.

Programs

  • Mathematica
    Table[-7/4 - 3 n/2 - RootSum[-1 + 7 # - #^2 - 6 #^3 + 11 #^4 - 7 #^5 + #^6 &, -60219359 #^n + 44281168 #^(1 + n) + 293383797 #^(2 + n) - 152425571 #^(3 + n) - 51762232 #^(4 + n) + 12785939 #^(5 + n) &]/2083234808, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
    LinearRecurrence[{9, -26, 35, -22, -3, 16, -9, 1}, {6, 40, 218, 1126, 5726, 28992, 146642, 741556}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
  • PARI
    concat(0, Vec(-2*x*(x^5-4*x^4-3*x^3+7*x^2-7*x+3)/((x-1)^2*(x^6-7*x^5+x^4+6*x^3-11*x^2+7*x-1)) + O(x^100))) \\ Colin Barker, Nov 06 2014

Formula

a(n) = 9a(n-1) - 26a(n-2) + 35a(n-3) - 22a(n-4) - 3a(n-5) + 16a(n-6) - 9a(n-7) + a(n-8). - David Radcliffe, Jan 19 2001
G.f.: -2*x*(x^5-4*x^4-3*x^3+7*x^2-7*x+3) / ((x-1)^2*(x^6-7*x^5+x^4+6*x^3-11*x^2+7*x-1)). - Colin Barker, Nov 06 2014

A359993 Array read by antidiagonals: T(m,n) is the number of connected spanning subgraphs in the grid graph P_m X P_n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 23, 23, 1, 1, 105, 431, 105, 1, 1, 479, 7857, 7857, 479, 1, 1, 2185, 142625, 555195, 142625, 2185, 1, 1, 9967, 2587279, 38757695, 38757695, 2587279, 9967, 1, 1, 45465, 46929343, 2698167665, 10286937043, 2698167665, 46929343, 45465, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2023

Keywords

Comments

Also T(m,n) except when m = n = 0 is the number of connected edge covers in the m X n grid graph.

Examples

			Table starts:
=================================================================
m\n| 1    2       3          4             5                6
---+-------------------------------------------------------------
1  | 1    1       1          1             1                1 ...
2  | 1    5      23        105           479             2185 ...
3  | 1   23     431       7857        142625          2587279 ...
4  | 1  105    7857     555195      38757695       2698167665 ...
5  | 1  479  142625   38757695   10286937043    2711895924889 ...
6  | 1 2185 2587279 2698167665 2711895924889 2692324030864335 ...
   ...
		

Crossrefs

Rows 1..4 are A000012, A107839(n-1), A158453, A359991.
Main diagonal is A359992.
Cf. A116469 (spanning trees), A287151 (connected induced subgraphs), A286912 (edge covers), A359990 (edge cuts), A360194 (spanning forests).

Formula

T(m,n) = T(n,m).

A059524 Number of nonzero 4 X n binary arrays with all 1's connected.

Original entry on oeis.org

0, 10, 108, 1126, 11506, 116166, 1168586, 11749134, 118127408, 1187692422, 11941503498, 120064335342, 1207171430452, 12137349489598, 122033415224922, 1226969238084836, 12336404001299200, 124034783402890620, 1247091736942594618, 12538723071673581562
Offset: 0

Views

Author

David Radcliffe, Jan 21 2001

Keywords

Comments

Old name was "Number of 4 X n checkerboards in which the set of red squares is edge connected".
The number of connected (non-null) induced subgraphs in the grid graph P_4 X P_n. - Andrew Howroyd, May 20 2017

Examples

			a(1) = 10 because there are 4 positions to place a single 1, 3 ways to place a pair of adjacent 1's, 2 ways to place a triple of connected 1's, and 1 way for the all-1's array: 4+3+2+1=10. - _R. J. Mathar_, Mar 13 2023
		

Crossrefs

Row 4 of A287151.

Formula

Empirical g.f.: 2*x*(1 + x)*(5 - 36*x + 131*x^2 - 239*x^3 + 131*x^4 + 94*x^5 - 157*x^6 + 61*x^7 - 73*x^8 + 18*x^9 + x^10) / ((1 - x)^2*(1 - 15*x + 59*x^2 - 97*x^3 + 19*x^4 + 210*x^5 - 222*x^6 - 22*x^7 + 113*x^8 - 7*x^9 + 71*x^10 - 13*x^11 - x^12)). - Colin Barker, Oct 11 2017
The recurrence is correct. See A287151. - Andrew Howroyd, Dec 18 2024

Extensions

Clearer name from R. H. Hardin, Jul 06 2009
a(16) corrected by Andrew Howroyd, May 20 2017

A378941 Number of Motzkin paths of length n up to reversal.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 32, 70, 179, 435, 1142, 2947, 7889, 21051, 57192, 155661, 427795, 1179451, 3271214, 9102665, 25434661, 71282431, 200406472, 564905068, 1596435581, 4521772933, 12835116530, 36504093693, 104012240063, 296871993373, 848694481664, 2429882584254, 6966789756243
Offset: 0

Views

Author

Andrew Howroyd, Dec 17 2024

Keywords

Comments

A Motzkin path of length n is a path from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D = (1,-1). This sequence considers a path and its reversal to be the same. The number of symmetric paths of length 2n (and also 2n+1) is given by A005773(n+1).
a(n) + 1 is an upper bound on the order of the linear recurrence of column n-1 of A287151. At least for columns up to 7, this bound gives the actual order of the recurrence. For example, a(5) = 13 and the order of the recurrence of column 4 (=A059524) is 14.

Examples

			The Motzkin paths for a(1)..a(5) are:
a(1) = 1: H;
a(2) = 2: HH, UD;
a(3) = 3: HHH, UHD, HUD=UDH;
a(4) = 7: HHHH, HUDH, UHHD, UUDD, UDUD, HHUD=UDHH, HUHD=UHDH.
a(5) = 13: HHHHH, HUHDH, UHHHD, UUHDD, UDHUD, HHHUD=UDHHH, HHUHD=UHDHH, HHUDH=HUDHH, HUHHD=UHHDH, HUUDD=UUDDH, HUDUD=UDUDH, UHUDD=UUHDD, UHDUD=UPUHD.
		

Crossrefs

Cf. A001006, A005773, A007123 (similar for Dyck paths), A175954, A185100, A287151, A292357.

Programs

  • PARI
    Vec(-3/(4*x)-(1+sqrt(1-2*x-3*x^2+O(x^40)))/(4*x^2)+(1+x)/(-1+3*x^2+sqrt(1-2*x^2-3*x^4+O(x^40)))) \\ Thomas Scheuerle, Dec 18 2024

Formula

a(n) = (A001006(n) + A005773(floor(1 + n/2))) / 2.

A378940 Number of nonzero 5 X n binary arrays with all 1's connected.

Original entry on oeis.org

0, 15, 275, 5726, 116166, 2301877, 45280509, 889477656, 17470103108, 343131620201, 6739543393711, 132373673619692, 2599998546891870, 51067506790572861, 1003035296281103375, 19700977608538546036, 386953998564799463776, 7600302885548184827385, 149280286962228069289683
Offset: 0

Views

Author

Andrew Howroyd, Dec 18 2024

Keywords

Comments

Equivalently, the number of connected (non-null) induced subgraphs in the grid graph P_5 X P_n.

Crossrefs

Row 5 of A287151.
Previous Showing 11-15 of 15 results.