cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A301470 Signed recurrence over enriched r-trees: a(n) = (-1)^n + Sum_y Product_{i in y} a(y) where the sum is over all integer partitions of n - 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 3, 5, 9, 15, 27, 47, 87, 155, 288, 524, 983, 1813, 3434, 6396, 12174, 22891, 43810, 82925, 159432, 303559, 585966, 1121446, 2171341, 4172932, 8106485, 15635332, 30445899, 58925280, 115014681, 223210718, 436603718, 849480835, 1664740873
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
        end:
    a:= n-> `if`(n<2, 1-n, b(n-2$2)+b(n-1, n-2)):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    a[n_]:=a[n]=(-1)^n+Sum[Times@@a/@y,{y,IntegerPartitions[n-1]}];
    Array[a,30]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i < 1, 0, b[n, i - 1] + a[i] b[n - i, Min[n - i, i]]]];
    a[n_] := If[n < 2, 1 - n, b[n - 2, n - 2] + b[n - 1, n - 2]];
    a /@ Range[0, 45] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

O.g.f.: 1/(1 + x) + x Product_{i > 0} 1/(1 - a(i) x^i).
a(n) = Sum_t (-1)^w(t) where the sum is over all enriched r-trees of size n and w(t) is the sum of leaves of t.

A302917 Solution to a(1) = 1 and Sum_y Product_i a(y_i) = 0 for each n > 1, where the sum is over all relatively prime or monic partitions of n.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -3, 1, 4, -5, -3, 3, 4, 2, -6, -6, 19, -8, -25, 25, 20, -12, -34, 2, 30, 38, -117, 54, 159, -173, -123, 55, 229, 32, -250, -148, 753, -365, -1022, 840, 1121, -847, -1482, -390, 2099
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[n===1,1,0]-Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}];
    Array[a,20]

A300575 Coefficient of x^n in (1+x)(1-x^3)(1+x^5)(1-x^7)(1+x^9)...

Original entry on oeis.org

1, 1, 0, -1, -1, 1, 1, -1, -2, 0, 2, 0, -3, -1, 3, 2, -3, -3, 3, 4, -3, -6, 2, 7, -1, -8, 0, 10, 2, -11, -4, 12, 7, -13, -10, 13, 13, -13, -17, 13, 22, -11, -26, 9, 31, -6, -36, 2, 41, 3, -46, -9, 51, 17, -55, -26, 59, 36, -62, -48, 63, 61, -64, -75, 64, 92, -60, -109, 55, 127, -48, -147, 37, 167
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[-x,-x^2],{x,0,100}],x]

Formula

O.g.f.: Product_{n >= 0} (1 + (-1)^n x^(2n+1)).
a(n) = Sum (-1)^k where the sum is over all strict integer partitions of n into odd parts and k is the number of parts not congruent to 1 modulo 4.

A301469 Signed recurrence over enriched r-trees: a(n) = 2 * (-1)^n + Sum_y Product_{i in y} a(y) where the sum is over all integer partitions of n - 1.

Original entry on oeis.org

2, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 3, 3, 6, 7, 11, 17, 23, 35, 53, 75, 119, 173, 264, 398, 603, 911, 1411, 2114, 3279, 4977, 7696, 11760, 18253, 27909, 43451, 66675, 103945, 160096, 249904, 385876, 603107, 933474, 1461967, 2266384, 3553167, 5521053, 8664117, 13485744
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=2(-1)^n+Sum[Times@@a/@y,{y,IntegerPartitions[n-1]}];
    Array[a,30]

Formula

O.g.f.: 2/(1 + x) + x Product_{i > 0} 1/(1 - a(i) x^i).
a(n) = Sum_t 2^k * (-1)^w where the sum is over all enriched r-trees of size n, k is the number of leaves, and w is the sum of leaves.

A295635 Write 2 - Zeta(s) in the form 1/Product_{n > 1}(1 + a(n)/n^s).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 6, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 12, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 10, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 6, 2, 1, 16, 2, 2
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    -Solve[Table[-1==Sum[Times@@a/@f,{f,facs[n]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

A295636 Write 2 - Zeta(s) in the form Product_{n > 1}(1 - a(n)/n^s).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 8, 1, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 8, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 1, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 8, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 3, 2, 1, 16, 2, 2, 2
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    -Solve[Table[-1==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

Formula

a(n) = Sum_t (-1)^(v(t)-1) where the sum is over all strict tree-factorizations of n (see A295279 for definition) and v(t) is the number of nodes (branchings and leaves) in t.

A290320 Write 1 - t * x/(1-x) as an inverse power product 1/(1+c(1)x) * 1/(1+c(2)x^2) * 1/(1+c(3)x^3) * ... The sequence is a regular triangle where T(n,k) is the coefficient of t^k in c(n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 3, 4, 2, 0, 0, 1, 3, 5, 5, 3, 1, 0, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 9, 13, 13, 9, 4, 1, 0, 1, 5, 14, 25, 30, 24, 12, 3, 0, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 6, 21, 48, 75, 81, 60, 30, 10, 2, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2017

Keywords

Comments

An irregular triangle with only the nonzero coefficients is given by A290262.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  0;
  1,  2,  2,  1;
  1,  2,  2,  1,  0;
  1,  3,  4,  2,  0,  0;
  1,  3,  5,  5,  3,  1,  0;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  4,  9, 13, 13,  9,  4,  1,  0;
  1,  5, 14, 25, 30, 24, 12,  3,  0,  0;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1,  0;
  1,  6, 21, 48, 75, 81, 60, 30, 10,  2,  0,  0;
		

Crossrefs

Programs

  • Mathematica
    nn=12;Solve[Table[Expand[SeriesCoefficient[Product[1/(1+c[k]x^k),{k,n}],{x,0,n}]]==-t,{n,nn}],Table[c[n],{n,nn}]][[1,All,2]]

A305572 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} a(n/d)^d.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 2, 0, 10, 4, 2, 32, 2, 4, 42, 0, 2, 228, 2, 32, 138, 4, 2, 1536, 34, 4, 1514, 32, 2, 3940, 2, 0, 2058, 4, 162, 102944, 2, 4, 8202, 1536, 2, 51940, 2, 32, 207370, 4, 2, 3538944, 130, 3204, 131082, 32, 2, 15668836, 2082, 1536, 524298, 4, 2, 54327840
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[a[n/y]^y,{y,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305572(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,A305572(n/d)^d))); \\ Antti Karttunen, Dec 05 2021

Formula

a(n) = Sum_t (-1)^(n-k) where the sum is over all same-trees of weight n (see A281145 for definition) and k is the number of leaves.

A305610 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} binomial(a(n/d) + d - 1, d).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 2, 0, 6, 3, 2, 11, 2, 3, 12, 0, 2, 38, 2, 11, 14, 3, 2, 90, 8, 3, 68, 11, 2, 127, 2, 0, 18, 3, 16, 1194, 2, 3, 20, 90, 2, 173, 2, 11, 644, 3, 2, 5158, 10, 68, 24, 11, 2, 12762, 20, 90, 26, 3, 2, 12910, 2, 3, 1386, 0, 22, 289, 2, 11, 30, 219, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[Binomial[a[n/d]+d-1,d],{d,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305610(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,binomial(A305610(n/d)+d-1, d)))); \\ Antti Karttunen, Dec 05 2021
Previous Showing 21-29 of 29 results.