cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A293514 a(n) = Product_{d|n, d>1} prime(A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 20, 6, 8, 2, 48, 2, 8, 8, 84, 2, 48, 2, 48, 8, 8, 2, 320, 6, 8, 20, 48, 2, 128, 2, 264, 8, 8, 8, 864, 2, 8, 8, 320, 2, 128, 2, 48, 48, 8, 2, 2688, 6, 48, 8, 48, 2, 320, 8, 320, 8, 8, 2, 3072, 2, 8, 48, 1560, 8, 128, 2, 48, 8, 128, 2, 11520, 2, 8, 48, 48, 8, 128, 2, 2688, 84, 8, 2, 3072, 8, 8, 8, 320
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Examples

			For n = 24, its divisors larger than one are: 2, 3, 4, 6, 8, 12, 24. Only 2 has valuation > 1, namely A286561(24,2) = 3 (as 2^3 divides 24), while the other six have valuation 1. Thus a(24) = prime(1)^6 * prime(3) = 64*5 = 320.
For n = 64, its divisors larger than one are: 2, 4, 8, 16, 32, 64. We see that 2^6 = 4^3 = 8^2 = 64, while valuation of the last three 16, 32 and 64 is 1. Thus a(64) = prime(1)^3 * prime(2) * prime(3) * prime(6) = 2^3 * 3 * 5 * 13 = 1560.
		

Crossrefs

Programs

  • PARI
    A293514(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(valuation(n,d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A286561(n,d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A056595(n) [See A046951.]
1+A056239(a(n)) = A169594(n).
A064989(a(n)) = A293515(n).

A331592 a(n) is the smaller of the number of terms in the factorizations of n into (1) powers of distinct primes and (2) powers of squarefree numbers with distinct exponents that are powers of 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

See A329332 for a description of the relationship between the two factorizations. From this relationship we get the formula a(n) = min(A001221(n), A001221(A225546(n))).
The result depends only on the prime signature of n.
k first appears at A191555(k).

Examples

			The factorization of 6 into powers of distinct primes is 6 = 2^1 * 3^1 = 2 * 3, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 6 = 6^(2^0) = 6^1, which has 1 term. So a(6) is min(2,1) = 1.
The factorization of 40 into powers of distinct primes is 40 = 2^3 * 5^1 = 8 * 5, which has 2 terms. Its factorization into powers of squarefree numbers with distinct exponents that are powers of 2 is 40 = 10^(2^0) * 2^(2^1) = 10^1 * 2^2 = 10 * 4, which has 2 terms. So a(40) is min(2,2) = 2.
		

Crossrefs

Sequences with related definitions: A331308, A331591, A331593.
A003961, A225546 are used to express relationship between terms of this sequence.
Differs from = A071625 for the first time at n=216, where a(216) = 2, while A071625(216) = 1.

Programs

Formula

a(n) = min(A001221(n), A331591(n)) = min(A001221(n), A001221(A293442(n))).
a(A225546(n)) = a(n).
a(A003961(n)) = a(n).
a(n^2) = a(n).

A293443 Multiplicative with a(p^e) = A019565(A193231(e)).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 3, 6, 4, 2, 12, 2, 4, 4, 10, 2, 12, 2, 12, 4, 4, 2, 6, 6, 4, 3, 12, 2, 8, 2, 5, 4, 4, 4, 36, 2, 4, 4, 6, 2, 8, 2, 12, 12, 4, 2, 20, 6, 12, 4, 12, 2, 6, 4, 6, 4, 4, 2, 24, 2, 4, 12, 15, 4, 8, 2, 12, 4, 8, 2, 18, 2, 4, 12, 12, 4, 8, 2, 20, 10, 4, 2, 24, 4, 4, 4, 6, 2, 24, 4, 12, 4, 4, 4, 10, 2, 12, 12, 36, 2, 8, 2, 6, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2017

Keywords

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = A019565(A193231(A067029(n))) * a(A028234(n)).
For all n >= 1, A007814(a(n)) = A293439(n).
For all k in A270428, A007814(a(k)) = A001221(k).

A294876 a(n) = Product_{d|n, d>1} prime(gcd(d,n/d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 18, 10, 8, 2, 72, 2, 8, 8, 126, 2, 200, 2, 72, 8, 8, 2, 648, 22, 8, 50, 72, 2, 128, 2, 882, 8, 8, 8, 23400, 2, 8, 8, 648, 2, 128, 2, 72, 200, 8, 2, 31752, 34, 968, 8, 72, 2, 5000, 8, 648, 8, 8, 2, 10368, 2, 8, 200, 16758, 8, 128, 2, 72, 8, 128, 2, 2737800, 2, 8, 968, 72, 8, 128, 2, 31752, 1150, 8, 2, 10368, 8, 8, 8, 648, 2, 80000, 8, 72
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Cf. A294877 (rgs-version of this filter).
Cf. also A293442, A293514, A293524.

Programs

  • Mathematica
    A294876[n_] := Product[Prime[GCD[d, n/d]], {d, Rest[Divisors[n]]}];
    Array[A294876, 100] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(gcd(d,n/d)).
Other identities. For all n >= 1:
1+A007814(a(n)) = A034444(n).
1+A056239(a(n)) = A055155(n).
For n > 1, A061395(a(n)) = A000188(n).

A302791 A filter sequence for Fermi-Dirac factorization: restricted growth sequence transform of A046523(A302024(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 2, 4, 2, 3, 2, 4, 4, 2, 2, 4, 2, 3, 4, 4, 2, 5, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 3, 4, 2, 4, 4, 6, 2, 6, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 6, 4, 7, 4, 4, 2, 5, 2, 4, 3, 4, 4, 6, 2, 4, 4, 6, 2, 7, 2, 4, 4, 4, 4, 6, 2, 4, 2, 4, 2, 6, 4, 4, 4, 7, 2, 7, 4, 4, 4, 4, 4, 6, 2, 4, 3, 4, 2, 6, 2, 7, 6
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A064547(i) = A064547(j).
For all i, j: a(i) = a(j) => A302790(i) = A302790(j).
See also comments in A302024.

Crossrefs

Cf. A037445, A046523, A050376 (gives the positions of 2's), A052331, A064547, A293442, A302024, A302787, A302790.

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A302024(n) = A005940(1+A052331(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux302791(n) = A046523(A302024(n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux302791(n))),"b302791.txt");

A293447 Fully additive with a(p^e) = e * A000225(PrimePi(p)), where PrimePi(n) = A000720(n) and A000225(n) = (2^n)-1.

Original entry on oeis.org

0, 1, 3, 2, 7, 4, 15, 3, 6, 8, 31, 5, 63, 16, 10, 4, 127, 7, 255, 9, 18, 32, 511, 6, 14, 64, 9, 17, 1023, 11, 2047, 5, 34, 128, 22, 8, 4095, 256, 66, 10, 8191, 19, 16383, 33, 13, 512, 32767, 7, 30, 15, 130, 65, 65535, 10, 38, 18, 258, 1024, 131071, 12, 262143, 2048, 21, 6, 70, 35, 524287, 129, 514, 23, 1048575, 9, 2097151, 4096, 17, 257, 46, 67, 4194303, 11, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2017

Keywords

Comments

Original, equal definition: totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n).

Crossrefs

Programs

Formula

Totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n).
a(1) = 0, and for n > 1, a(n) = A005187(A087207(n)) + a(A003557(n)).
Other identities:
For all n >= 1, a(A293442(n)) = A046645(n).
For all n >= 2 and all k >= 0, a(n^k) = k*a(n).
For all n >= 1, a(n) >= A048675(n) >= A331740(n) >= A331591(n).

Extensions

Definition simplified by Antti Karttunen, Feb 05 2020

A293524 a(n) = Product_{d|n, d>1} prime(A052409(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 30, 6, 8, 2, 48, 2, 8, 8, 210, 2, 48, 2, 48, 8, 8, 2, 480, 6, 8, 30, 48, 2, 128, 2, 2310, 8, 8, 8, 864, 2, 8, 8, 480, 2, 128, 2, 48, 48, 8, 2, 6720, 6, 48, 8, 48, 2, 480, 8, 480, 8, 8, 2, 3072, 2, 8, 48, 30030, 8, 128, 2, 48, 8, 128, 2, 17280, 2, 8, 48, 48, 8, 128, 2, 6720, 210, 8, 2, 3072, 8, 8, 8, 480
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

  • PARI
    A293524(n) = { my(m=1,e); fordiv(n,d, if(d>1, e = ispower(d); if(!e, m += m, m *= prime(e)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A052409(d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A183096(n).
A064989(a(n)) = A294875(n).

A318469 Multiplicative with a(p^e) = A019565(A003714(e)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 10, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 7, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 20, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 14, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 20, 10, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 14, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Crossrefs

Programs

  • PARI
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A318469(n) = factorback(apply(e -> A019565(A003714(e)),factor(n)[,2]));

Formula

For all n >= 1, A001222(a(n)) = A318464(n).

A340323 Multiplicative with a(p^e) = (p + 1) * (p - 1)^(e - 1).

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 8, 18, 12, 12, 14, 24, 24, 3, 18, 24, 20, 18, 32, 36, 24, 12, 24, 42, 16, 24, 30, 72, 32, 3, 48, 54, 48, 24, 38, 60, 56, 18, 42, 96, 44, 36, 48, 72, 48, 12, 48, 72, 72, 42, 54, 48, 72, 24, 80, 90, 60, 72, 62, 96, 64, 3, 84, 144, 68, 54
Offset: 1

Views

Author

Keywords

Comments

Starting with any integer and repeatedly applying the map x -> a(x) reaches the fixed point 12 or the loop {3, 4}.

Examples

			a(2^s) = 3 for all s>0.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local  t;
      mul((t[1]+1)*(t[1]-1)^(t[2]-1),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 07 2021
  • Mathematica
    fa[n_]:=fa[n]=FactorInteger[n];
    phi[1]=1; phi[p_, s_]:= (p + 1)*( p - 1)^(s - 1)
    phi[n_]:=Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i,Length[fa[n]]}];
    Array[phi, 245]
  • PARI
    A340323(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,(f[i,1]+1)*((f[i,1]-1)^(f[i,2]-1)))); \\ Antti Karttunen, Jan 06 2021

Formula

a(n) = A167344(n) / A340368(n) = A048250(n) * A326297(n). - Antti Karttunen, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/(2*zeta(2)*zeta(3))) * Product_{p prime} (1 + 2/p^2) = 0.56361239505... . - Amiram Eldar, Nov 12 2022

A294932 Multiplicative with a(p^e) = A019565(A289814(e)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

Previous Showing 11-20 of 24 results. Next